Зарядное устройство для липо. Зарядное устройство для LiPo батарей

страйкбольное оружие

В последнее время стало много вопросов по LiPo аккумуляторам. Решил написать статью про зарядку, использование и подбор LiPo аккумуляторов.

Для примера рассмотрим аккумулятор ZIPPY Flightmax 1000mAh 2S1P 20C

Все что идет до цифры 1000 – это название фирмы изготовителя или торговая марка.

1000mAh – это емкость аккумулятора.

2S1P – 2S это количество батарей в сборке. Каждая батарея имеет напряжение около 3.7 вольта, так что напряжение такого аккумулятора равно 7.4 вольта. 1P – это количество сборок. То есть если взять 2 одинаковых аккумулятора, соединить их изолентой и спаять силовые провода параллельно (плюс с плюсом, а минус с минусом) то мы получим удвоение емкости, обозначается такая батарея 1000 2S2P и фактически равняется в эксплуатации 2000 2S1P. Обычно используют только одинарные сборки, поэтому 1P не говорят и не пишут.

20C – максимальный ток разряда, измеряется в емкостях батарей.

Что бы посчитать сколько LiPo сможет отдать ампер при загрузке двигателем необходимо умножить Емкость на количество С и разделить на 1000 (так как емкость указана в миллиампер/часах). Максимальный ток данной батареи будет равен 20 Амперам. Для 2200 20С – 44 ампера, 1200 30С = 36 Ампер и так далее.

Зарядка LiPo батарей

LiPo батареи заряжают током 1С (если только другое не указанно на самой батарее, в последнее время появились с возможностью зарядки током 2 и 5C). Штатный зарядный ток рассматриваемой батареи 1 Ампер. Для батареи 2200 – будет 2.2 ампера и тд.

Компьютеризированный зарядник производит балансировку батареи (выравнивание вольтажа на каждой банке батареи) во время зарядки. Хотя можно заряжать 2S батареи и без подключения балансировочного кабеля (белый разъем на фото) я настоятельно рекомендую подключать балансировочный разъем всегда ! 3S и большие сборки заряжать только с подключенным баланировочным проводом! Если вы не подключите и одна из банок наберет больше чем 4.4 вольта, то вас ждет незабываемый фейерверк!

Можно обезопасить себя и заряжать в спецпакетах – они не сгораемые и специально предназначены для снижения вреда в случае возгорания LiPo батарей.

Продолжаем рассказ про зарядку LiPo аккумуляторов.

Обычно быстро заливается в аккумулятор около 90% емкости, а потом начинается дозаряд с балансировкой банок. Более заряженные и подошедшие к пределу шунтируются и заряд идет на оставшиеся банки. Именно поэтому на ней можно заряжать пару 3S батарей как одну 6S.

Батарея заряжается до 4.2 вольта на банку (обычно на несколько милливольт меньше).

Режим “хранение”

На “умном” заряднике можно перевести LiPo в режим хранения,при этом батарея дозарядится/доразрядится до 3,85В на банку. Полностью заряженные батареи при хранении более 2-х месяцев (может и меньше) дохнут. Проверенно на личном опыте. Говорят что и полностью разряженные тоже, но за больший срок.

Я храню аккумуляторы в пластиковом чемоданчике. Это удобно. Знакомый хранит и носит в поле в вышеупомянутых пакетах. LiPo это обычная батарейка и если не замыкать контакты и не пробивать ее насквозь, то она не принесет никаких неприятностей при хранении и транспортировке.

Эксплуатация LiPo

Разряжать аккумулятор LiPo ниже чем на 3 вольта на банку не рекомендуется – может сдохнуть. Можно использовать звуковые индикаторы, но есть шанс, что запищит в самый неподходящий момент и вас засыпят шарами с ног до головы, как последнего лошару! Звуковая пищалка подсоединяется в балансирный разъем и как запищит – пора менять или доставать вторичку.

При потреблении мотором тока больше того, что может отдать аккумулятор, LiPo норовит вздуться и подохнуть. Так что за этим надо следить строго! Используйте ваттметры для контроля.

При эксплуатации есть еще один нюанс – наша батарея 1000mAh 20С. По идее отдает 20А. Моторы обычно позволяет превышать рекомендуемые токи, на 20%, впрочем я превышал и на 80% 🙂

Реально максимальную токоотдачу батареи держат не слишком хорошо. К примеру у меня 2200 20С отдает ток в 44А всего в течении 2-3-х минут, потом идет просадка напряжения, хотя по расчетам обязана отдавать не менее 5ти минут.

Так что при выборе LiPo батареи смотрим на максмальный ток заявленный для выбранного двигателя и накидываем запасец. Так для мотора, который кушает 8-12А наша 1000mAh 20С вполне подойдет, а вот для 16-18А я бы выбрал или с большей токотдачей, например 25-30С или взял большей емкости, например 1600 20С.

Для зарядки LiPo аккумуляторов большой емкости, недорогие зарядные балансиры не вполне подходят по причине ограниченного зарядного тока, в результате чего заряд аккумуляторов большой емкости (2…5А) растягивается на весьма длительное время. Предлагаемое зарядное устройство предназначено для зарядки 2S…3S LiPo аккумуляторов большой емкости с их балансировкой и индивидуальным отключением банок, на которых напряжение достигло 4,2 вольт.

Данная схема предназначена для зарядки 2S и 3S аккумуляторов, но при необходимости заряжать 4S или 5S аккумуляторы, достаточно увеличить число ячеек. Все ячейки одинаковы.

Принцип работы ЗУ рассмотрим на примере одной ячейки. Основой является прецизионный cтабилитрон TL431 с регулируемым порогом включения. Порог включения задается резистивным делителем напряжения на выводе управляющего электрода стабилитрона. До момента включения стабилитрона весь ток заряда течет через аккумулятор. Стабилитрон через резистор 1 Ком подключен параллельно аккумулятору, и напряжение на плюсовой шине, а также на резистивном делителе (и на управляющем электроде стабилитрона) по мере заряда аккумулятора постепенно возрастает. При достижении напряжения на аккумуляторе 4,2 Вольт открывается стабилитрон и от падения напряжения на резисторе 1 Ком открывается силовой транзистор КТ816. Зарядный ток теперь проходит через него. Загорается сигнализирующий светодиод. Цепочка из 4х последовательно соединеных мощных диодов и переход КЭ транзистора являются мощным стабилитроном с напряжением стабилизации около 4,2 Вольт, который препятствует разряду аккумулятора через открытый переход транзистора. Резистор *1,5 Ком подобрать таким образом, что бы при достижении на соответствующей банке аккумулятора напряжения +4,2 Вольт стабилитрон открывался и загорался сигнальный светодиод.

Доработанная схема.

Детали.
Трансформатор ТН36 или аналогичный.
Транзисторы КТ816 (ток коллектора 3 А).
Диоды – мощные диоды дипа КД226 с током не менее 2 А.
Мощный проволочный переменный резистор 10…..20 Ом для регулировки тока заряда.
Амперметр 1….3 А, для контроля тока заряда.

Каждый транзистор имеет небольшой радиатор 20 х 40 мм из аллюминия 1 мм.

Выходное напряжение, поступающее с выпрямителя на балансир должно превышать напряжение заряжаемой батареи. В выпрямителе использован диодный мост на ток 3 А и конденсатор 2200 мкф х 36 Вольт.

Для одной банки - напряжение с выпрямителя должно быть около 6 Вольт.
Для двух банок - напряжение с выпрямителя должно быть около 11 Вольт.
Для трех банок - напряжение с выпрямителя должно быть около 15 Вольт.
Для четырех банок - напряжение с выпрямителя должно быть около 20 Вольт.

При необходимости можно коммутировать обмотки трансформатора.
Напряжение отсечки заряженной банки 4,2 вольт.

Ток заряда для аккумуляторов выставляется мощным проволочным переменным резистором 10…20 Ом в пределах 1…2 А, а для аккумуляторов маленькой емкости в пределах 0,5 А.
Пользуюсь этим зарядником два года. Заряжаю аккумуляторы 1,8……….3,0 А.

Монтажка

Негатив печатной платы на три зарядные ячейки (3S LiPo) . Вид со стороны дорожек.

Вариант конструктивного исполнения ЗУ. Вид спереди. Диоды горят - заряд окончен.

Вид сзади. Видна ось переменного проволочного резистора установки тока.

Общий вид на внутренности.

Вид на печатную плату.

Видны - переменный резистор, диодный мост, конденсатор фильтра.

Специально для скептиков и приверженцев микроконтроллеров хочу сказать следующее.
Я ни в коем случае не отрицаю преимущества микроконтроллеров перед технологиями 80х годов!
Но схемотехника и технологии 80х доступны даже начинающим радиолюбителям, чего не скажешь о микропроцессорах. В данной статье я просто хочу показать, что на простых советских радиоэлементах, можно без особых усилий и материальных затрат за пару дней собрать то или иное нужное для дела устройство!

Александр Дегтярев, Владикавказ

Дополнительная статья


При последовательном способе зарядки, одно из главных требований, которое необходимо обеспечить, следующее – напряжение ни на одной секции заряжаемого литиевого аккумулятора, при зарядке, не должно превысить определённой величины (величина этого порога зависит от типа литиевого элемента). Обеспечить выполнение этого требования, при последовательной зарядке, не приняв специальных мер, невозможно… Причина очевидна – отдельные секции аккумулятора не идентичны, поэтому достижение максимально допустимого напряжения на каждой из секций при зарядке, происходит в разное время. Складывается ситуация, когда мы обязаны зарядку прекратить, так как напряжение на части секций уже достигло максимально допустимого порога. В то же время, часть секций остаются недозаряженными. Это плохо главным образом потому, что в итоге снижается общая ёмкость аккумулятора, так нам придётся прекратить разряд аккумулятора в тот момент, когда напряжение на самой «слабой» (недозаряженной) секции, достигнет своего минимально допустимого порога.

Чтобы не допустить повышение напряжения при зарядке, выше определённого порога, и служит балансир. Его задача достаточно проста – следить за напряжением на отдельной секции, и, как только напряжение на ней при зарядке достигнет определенной величины, дать команду на включение силового ключа, который подключит параллельно заряжаемой секции балластный резистор. При этом, если остаточный ток зарядки (а он, ближе к концу зарядки, уже достаточно мал, из-за малой разницы потенциалов между напряжением на заряжаемом аккумуляторе и напряжением на выходе зарядного устройства) будет меньше (или равен) тока протекающего через балластный резистор, то повышение напряжения на заряжаемой секции – прекратиться. При этом зарядка остальных секций, напряжение на которых ещё не достигло максимально допустимых значений – продолжиться. Закончится процесс заряда тем, что сработают балансиры всех секций аккумулятора. Напряжение на всех секциях будет одинаковым, и равным тому порогу, на которые настроены балансиры. Ток зарядки будет равен нулю, так как напряжение на аккумуляторе и напряжение на выходе зарядного устройства будут равны (нет разности потенциалов – нет тока зарядки). Будет протекать лишь ток через балластные резисторы. Его величина определяется величиной последовательно соединённых балластных резисторов и напряжением на выходе зарядного устройства.

Саму функцию контроля напряжения, легко смог бы выполнить любой компаратор, снабжённый опорным напряжением… Но компаратора у нас нет (точнее – он есть, но использовать его нам не удобно и не выгодно). У нас есть TL431. Но компаратор из неё, честно сказать – никакой. Сравнивать напряжение с опорным она умеет очень хорошо, но вот выдать чёткую, однозначную команду на силовой ключ, она не может. Вместо этого, при подходе к порогу, она плавно начинает загонять силовой ключ в активный (полуоткрытый) режим, ключ начинает сильно греться, и, в итоге, мы имеем не балансир, а полную ерунду.

Вот именно эту проблему, которая не позволяла полноценно использовать TL431, удалось решить на днях. Ларчик просто открывался (но открывать его пришлось более двух лет) – надо было превратить TL431, в триггер Шмитта. Что и было сделано. Получился идеальный балансир - точный, термостабильный, достаточно простой, с чёткой командой на силовой ключ.

Ниже - две принципиальные схемы балансиров, рассчитанные для контроля порогов LiFePO4 и Li-ion аккумуляторов.

Превратить TL431 в триггер Шмитта, удалось добавив в схему p-n-p транзистор Т1 и резистор R5. Работает это так - делителем R3,R4 определяется порог контролируемого напряжения. В момент, когда напряжение на управляющем электроде достигает 2,5 Вольта, TL431 – открывается, открывается при этом и транзистор Т1. При этом потенциал коллектора повышается, и часть этого напряжения через резистор R5 поступает в цепь управляющего электрода TL431. При этом TL431 лавинообразно входит в насыщение. Схема приобретает ярко выраженный гистерезис – включение происходит при 3,6 Вольт, а выключение - при 3,55 Вольт. При этом в затворе силового ключа формируется управляющий импульс с очень крутыми фронтами, и попадание силового ключа в активный режим – исключено. В реальной схеме, при токе через балансировочный резистор равном 0,365 Ампер, падение напряжения на переходе сток-исток силового ключа составляет всего 5-6 мВ. При этом сам ключ, всегда остаётся холодным. Что, собственно, и требовалось. Эту схему можно легко настроить для контроля любого напряжения (делителем R3,R4). Величина максимального тока балансировки определяется резистором R7 и напряжением на секции аккумулятора.

Коротко про точность. В реально собранном балансире на пять секций для аккумулятора LiFePO4, напряжения при балансировке уложились в диапазон 3,6-3.7 Вольт (максимально допустимое напряжение для LiFePO4 составляет 3,75 Вольт). Резисторы при сборке использовались обычные (не прецизионные). На мой взгляд – очень хороший результат. Считаю, что добиваться большей точности при балансировке, никакого особого практического смысла – нет. Но для многих – это скорее вопрос религии, нежели физики. И они вправе, и имеют возможность добиваться большей точности.

Рисунок ниже – плата отдельного балансира, и, для примера, плата балансира на шесть секций. Очевидно, что клонируя плату отдельного балансира, можно легко сделать плату балансира на любое количество секций и любых пропорций. Вот таким зарядно-балансировочным устройством я теперь пользуюсь. Я использую блок питания, описанный в статье про инвертор с адаптивным ограничением тока. Но можно использовать и любой другой стабилизированный блок питания, доработав его шунтом.

Балансир выполнен в виде отдельной платы. Он подключается к балансировочному разъему аккумулятора во время зарядки.

Пара слов про комплектующие. TL431 и p-n-p биполярный транзистор (подойдёт практически любой) в корпусах SOT23, можно найти на материнских платах компьютеров. Там же, можно найти и силовые ключи с "цифровыми" уровнями. Я использовал CHM61A3PAPT (или можно - FDD8447L) в корпусах TO-252A - подходят идеально, хотя характеристики очень избыточны (на токи до 1А, можно найти и что-нибудь по-проще).

В современных устройствах контроля за литиевыми батареями, описанные выше функции возложены на микроконтроллер.Но это гораздо более сложные для повторения устройства, и их применение оправдано далеко не всегда. Думаю - совсем не плохо, когда есть выбор.

Так выглядит балансир "живьём". За качество изготовления, вновь прошу прощения - из-за экономии времени, вновь рисовал плату обычным перманентным фломастером.

Переносное зарядное устройство — это способ зарядить LiPo аккумуляторы в поле, чтобы дольше летать. Ниже мы рассмотрим способы и решения зарядки аккумуляторов в поле. Я считаю, что это выгоднее и проще, чем покупать кучу аккумуляторов.

Когда я иду летать, я запросто могу разрядить за день более 20 аккумуляторов, летая на гоночном. Можно, конечно, купить столько батарей, сколько нужно для сеанса полетов, но я считаю, что зарядка в поле является более экономичным и практичным решением.

Что входит в полевое (переносное) зарядное устройство

  • Зарядник iSDT SC-200 (banggood)
  • 1 LiPo аккумулятор 6S 10000mAh (aliexpress)
  • Адаптер XT90 на XT60 (banggood)
  • Параллельная плата зарядки (Parallel Charging Board) (banggood)
  • Вольтметр (banggood)

Давайте я расскажу, почему мне так нравится полевая зарядка и почему она выгоднее.

Полевая зарядка — это дешево

Как вы уже наверное знаете, полностью заряженные LiPo не рекомендуется оставлять на хранение, это приводит к ухудшению характеристик батарейки, а главное, это небезопасно, так как возможно воспламенение.

Поэтому, если вы зарядили лишние аккумуляторы и не успеете их отлетать, вам придется их разряжать зарядником.

Но в полевой сборке, вы сможете «вернуть» заряд обратно в большой аккумулятор-донор или подзарядить совсем разряженные батареи, а также зарядить очки или шлем.

Портативность

Вес полевой зарядки ниже, чем 18 аккумуляторов, да и места занимает намного меньше.

  • Общий вес 18 4S примерно 3.4кг
  • Вес 8 4S + 1 большая + ЗУ + параллельная плата = 1513г + 1211г + 451г = 3,1 кг

Общая экономия веса конечно не такая большая, но тут больше играет роль экономия места. 6S чуть чуть больше, чем четыре 4S аккумуляторов.

Полевая зарядка безопаснее

Так как вместо 18 батареек, у нас 8, то по сути шанс воспламенения или любой другой опасной неполадки сокращается в 2 раза.

Минусы полевого зарядного устройства

У любой вещи есть свои минусы, в нашем случае их несколько:

  • Нужно купить новое зарядное устройство для LiPo, которое будет поддерживать подключение в качестве источника аккумулятор LiPo. Если оно у вас уже есть, то этот минус исключается.
  • Такая зарядка актуальна для тех, кто много летает. Если вы разряжаете менее 15-20 аккумуляторов за сеанс, то это будет уже не так привлекательно для вас.
  • Чтобы обеспечить параллельный заряд, ваши батареи должны быть на одинаковом уровне напряжения. Это означает, что вы должны уделять дополнительное внимание напряжению во время полета и решать, когда вы должны приземлиться. Это просто сделать, если у вас есть OSD, которое отображает количество потребленного тока.

Выбор зарядного устройства для полевой зарядки

Зарядник нужен такой, который сможет работать на постоянном токе.Диапазон входного напряжения должен быть широким, чтобы можно было подключать любой аккумулятор в качестве источника питания.

Мне особенно нравятся серии iSDT (SC608, Q6, SC620) для зарядки батарей LiPo в полевых условиях из-за их компактных и легких конструкций. Они поддерживают вход 9V-32V и поставляются с разъемом XT60, который позволяет использовать LiPo-батареи в качестве источника питания. Они также отлично подходят для повседневной зарядки.

Выбор источника питания для полевой зарядки

Для такой зарядки, вам понадобится какой-нибудь емкий источник питания, ниже таблица с вариантами:

Название LiPo аккумуляторы высокой ёмкости Портативный генератор Аккумулятор с глубоким разрядом Генератор на солнечных панелях
Топливо Перезаряжаемые бензин/ДТ Перезаряжаемые Перезаряжаемые — солнце
Напряжение 11.1V – 25.2V (3S-6S) Различное – AC и DC 12V Различное – AC и DC
Ёмкость Низкая (10Ah – 16Ah+) Высокая Высокая (20Ah – 120Ah) Средняя
Вес Легкие (1Kg – 2Kg) Тяжелые Тяжелые (5Kg – 35Kg) Средние
Цена Недорого Дорого $50 – $300 Дорого

Для зарядки некоторые используют автомобильный аккумулятор, но это не рекомендуется делать, так как вы его просто испортите. Вместо него нужно использовать аккумуляторы глубокого разряда.

Если у вас много аккумуляторов и летаете вы всегда с кем-то, то отличным решением будет купить все же генератор на бензине или ДТ. Они мощные и часто выдают постоянный ток, который совместим с большим диапазоном зарядных устройств. Но они дорогие и шумные, в отличие от других источников питания.

Солнечные генераторы — отличный вариант, если там, где вы живете много солнца, ну или просто солнечный день во время полетов.

Я же предпочитаю заряжать с помощью большой Lipo батареи — это просто и дешево.

Понадобилась зарядка для 3х баночной литиевой батареи и дабы не покупать класический iMax B6, я заглянул в бенгуд посмотреть какая есть альтернатива. Оказалось альтернатив много и сравнивая возможности зарядки и своего кошелька выбор пал на сабж. Заказ был оплачен, на следующий день отправлен(спасибо магазину!) и началось томное ожидание. Каков результат и вывод - прошу под кат.

Спустя месяц посылка была получена. Упаковка стандартная для бенга: черный полиэтиленовый пакет, товар завернут в вспененный полиэтилен. Коробка немного пострадала но не смертельно. Внутренности уцелели.


В комплекте: коробка, зарядка, инструкция на английском, кабель. Кабель короткий с американской вилкой - улетел в мусор. На замену используется кабель от переносного магнитофона.


Зарядка - это такая себе коробкочка 88х55х30мм, пластик черный, качество нормальное.
На лицевой стороне расположены 3 двухцветных (красный/зеленый) светодиода отображающие статус банки. Зеленый - заряжено, красный - заряжается. Светодиод отсутствующей банки горит зеленым.




То есть при включении зарядки без батареи все лампочки горят зеленым. Немного странный алгоритм.


Электрические параметры обещанные производителем:
Напряжение питания: 110-220В
Мощность: 20Вт
Исходящий ток(ток нагрузки): 1600мА, на корпусе указано 3х700мА.
Вес: 100г - по факту меньше.

Инструкция










Перейдем к вскрытию. Корпус открывается легко - 4 самореза.
Как видно саморезы не подбирали или корпус изготовлен не верно - все стойки, в которые вкручены саморезы, лопнули.




Плата на вид достаточно качественная, монтаж тоже.










С обратной стороны флюс смыт но не окончательно, так же присутствуют «сопли» термоклея которыми зафиксированы стойки светодиодов.






Блок питания выполнен на популярном чипе DK112, а зарядная часть выполнена на еще более популярном:) чипе TP4056, которым все знают по компактной плате зарядки Li-po батарей. По одному TP4056 на канал. Токозадающий резистор - 1.5 кОм, что по спецификации соответствует максимальному току заряда 780 мА. Впервые вижу что бы китайцы занижали параметры устройства)))


Кстати, ток заряда на банку можно регулировать изменив сопротивление резистора. Это на тот случай если не нужен такой большой ток заряда, а зарядка эта есть или подходит по каким то другим причинам.
780 мА - это не мальнький ток, а если еще его утроить, то нагрев должен быть приличный. Так и есть - при зарядке коробка греется но не горячая, скорее всего потому что чипы находятся далеко от корпуса. По-хорошему на чипы надо бы наклеить радиатор но пока нет ничего подходящего. Посмотрим насколько долго хватит ресурсов TP4056 - в отзывах на бенге есть один о горевшем канале. Благо сами чипы TP4056 стоят десяток на доллар так что можно их легко менять.

Зарядка батареи
К зарядному была подключен батарея 2S (4500х2) с зарядом примерно 70%.


Зарядка ее аккуратно зарядила, слачала погас один светодиод, потом второй.


Итог: одна банка 4.17В, вторая - 4.2В. Хороший результат.





Для сравнения замер батареи пищалкой и мультиметром.



Позже была заряжена батарея 2S (300х2) и на одной банке так же был недозаряд: 4.16/4.20В. Причина в чипах TP4056, толи китайские допуски, толи отбраковка…
При желании можно заменить TP4056 которая недозаряжает дабы получить идеальную зарядку.
Какой максимальный ток отдает зарядка при заряде батареи 3S и вытягивает ли встроенный БП пока неизвестно, так как нет такой батареи под рукой, да и как ток мерять по трем каналам, можно конечно померять общий ток после выхода бп, но в следующий раз.

В общем подведем итоги.

Плюсы: имеет встроенный блок питания, умеет балансировать заряд между банками, хорошая цена.
Минусы: слабо реализована система охлаждения зарядной части (желательно установить радиаторы на TP4056, просверлить дополнительные отверстия в корпусе для лучшей вентиляции), короткий кабель с плоской вилкой, не идеальный конечный результат заряда(хотя возможно это мои придирки).

Выводы: зарядное мне понравилось и имеет право на существование. Если у вас нет надобности в мультизарядке и есть к примеру только один прибор с многобаночной батареей, то данное зарядное устройство будет хорошим выбором для использования его вблизи розетки.
При наличии желания и прямых рук зарядку можно модернизировать для получения более точного напряжения заряда.

Планирую купить +19 Добавить в избранное Обзор понравился +21 +34