Автоматический регулятор вращения микродрели. Блок управления минидрелью

Здоровья всем читателям Муськи!
Благодаря этому замечательному сайту обзавелся множеством полезных вещей и знаний и в ответ решил написать первый отчет о недавно разработанном устройстве. В процессе разработки устройства столкнулся с рядом проблем и успешно их разрешил. Возможно, кому-то из коллег-новичков описание некоторых решений поможет в творчестве.
Для изготовления печатных плат обзавелся микродрелью и стойкой для нее, превращающей дрельку в сверлильный микростанок. Необходимость этого возникла после кучки переломанных сверл 0.5-1мм при использовании в шуруповерте и китайском дремеле. Но, как оказалось, пользоваться таким инструментом без регулятора оборотов невозможно. Регулятор решил сделать самостоятельно, попутно получив новые знания.

Радиолюбительский опыт у меня небольшой. В детстве по книге Борисова собрал несколько приемников, да моргалок на мультивибраторах. Потом пошли другие увлечения и дела.
А тут по случаю заметил Arduino, лихо наваял макетов метеостанций, роботов, и захотелось автоматизировать при помощи микроконтроллеров все, до чего дотянусь. Размеры контроллеров шли по убыванию размеров и облегчению встраивания – Arduino UNO, Arduino Pro Mini, потом кучка ATMega328P, и для самых мелких и простых устройств приобрел ATtiny85.
Тиньки покупал более года назад и они лежали и ждали свой очереди.

Скриншот заказа


(там еще термоусадка в заказе была, потому общая цена выше)


МК приехали как обычно в пакете с пупыркой, сами кучкой в отдельном полиэтиленовом пакетике. Лучше бы конечно в жестком коробке или в пенке, но и так ничего не погнулось и все рабочие.

Поначалу паял схемки на макетных платах, но почитав про ЛУТ, понял, что вполне реально и гораздо удобнее все собирать на нормальных печатных платах.
Также понемногу начал собирать полезный инструмент, среди которого оказалась микродрелька МД-3 с цанговым патроном и станочком для сверления мелких отверстий. Можно было бы конечно купить только цангу, а двигатель откуда-нибудь выковырять, но решил приобрести готовое в местном магазине.

Печатаем на лазернике рисунок на глянцевой фотобумаге Lomond для струйной печати. Но совать в новенький принтер совсем не предназначенную для него бумагу было стремно. Нашел в сети предупреждения, что глянцевое покрытие струйной бумаги может расплавиться, прилипнуть к печке и угробить принтер. Для уверенности провел эксперимент - покатал по поверхности этой бумаги нагретый до 200С паяльник (точную температуру печки так и не нашел, но около того), бумага чуть покоробилась, но ничего не плавилось и не прилипало - значит можно и в принтер.

Наутюжил рисунок на плату, смыл бумагу. На плате остался весьма качественный рисунок проводников и прилипший глянцевый слой бумаги. Автор технологии рекомендовал удалять его не сильно липкой изолентой, но как я ни старался, либо глянец ничуть не удалялся, либо вместе с ним отрывались проводники. Надписи тоже сразу на изоленту перешли. Намучившись, взял шило, и, процарапав между проводниками, содрал почти весь глянец. Дело тонкое и утомительное, надо что-то придумывать. Потом, делая вторую и третью платы, искал способ избавиться от проклятого глянца, но печать ни на журнальной странице, ни на основе самоклейки не давали такого качества рисунка, дорожки расплывались или отваливались. Но зато понял, что и глянец фотобумаги счищать под ноль не обязательно - достаточно хоть чуть процарапать между дорожками для доступа раствора к меди, а местами стравилось и без царапин, сквозь глянец.

Травить медь решил раствором перекиси водорода и лимонной кислоты как наиболее доступным составом. Возможные варианты химии для травления с расчетами можно посмотреть вот здесь

Перекись взял из аптечки, куплена была года 3 назад, срок годности вышел года 2 как, думал уже выдохлась и работать вообще не будет. Однако ошибся, плату протравило весьма бодро - минуты за три. Вот результат:

Одна дорожка пострадала от царапания шилом, ее восстановил откусанным выводом резистора. Плюс незначительные прорехи от попытки применения изоленты. Надо обзавестись подходящим маркером, а пока где смог подмазал лаком.

Плату залудил паяльником с применением оплетки. Напаял детали.




Высокие латунные стойки вкрученные в друг друга с обоих сторон платы через крепежные отверстия – удобная штука, можно плату без корпуса во время монтажа и отладки ставить на стол любой стороной не опасаясь чего либо помять или замкнуть.

Из наиболее трудоемкого было подлезть и припаять выводные светодиоды со стороны проводников. В качестве лицевой стороны решил использовать сторону пайки, т.к. на ней высота деталей гораздо меньше, а пропуск сквозь плату вала переменного резистора уменьшает его длину до нужной.

Конденсатор C2 на схеме подключенный к Reset запаивать не стал, т.к. он хоть и повышает надежность запуска устройства, но при перепрошивке МК может помешаться.

Микроконтроллер запаивал в последнюю очередь, перед этим подключив плату к БП и убедившись, что ничего сразу не выгорит и стабилизатор выдаст штатные 5В. Ничего не задымилось и потому подключаем на штырьки ICSP программатор и заливаем тестовую прошивку.

Прошивку для устройства будем писать в знакомой многим среде программирования Arduino, предварительно добавив в нее поддержку микроконтроллеров ATtiny, скачав и распаковав их в папку Arduino/hardware.

Тестовый скетч (приводить смысла не вижу) просто считывал состояния входных сигналов и отображал их на имеющихся выходных с подключенными светодиодами. Т.к. входных у нас 4 канала, а выходных только 2, пришлось провести проверку в несколько этапов.

Все заработало как и ожидалось, за исключением одного - не читалась кнопка, подключенная к одному каналу с зеленым светодиодом, а светодиод горел заметно ярче красного. Замеры тестером показали, что в состонии PB0 в качестве выхода через светодиод течет более 20мА и на нем падает всего 2.1В. А в состоянии входа с внутренней подтяжкой на ноге всего 1.74В при отпущеной кнопке и 0.6В при нажатой. Неудивительно, что постоянно читается 0. Низковольтный зеленый светодиод даже не светясь при протекании микроамперного тока просаживал напряжение на ноге. Теперь понятно для чего в исходной статье последовательно подключали 2 светодиода.

Но ставить второй светодиод светить внутрь коробки тупо в качестве балласта (и на лицевой панели 2 одинаковых тоже не нужны) показалось несколько кривым решением. Задумался как еще можно приподнять напряжение в цепи светодиода и вспомнил про ВАХ стабилитрона. Если подключить последовательно со светодиодом встречно ему стабилитрон на 2В (чтобы работал штатно, на обратной ветви ВАХ), то получится как раз то, что нам надо. Когда горит светодиод на токе 10мА - стабилитрон пробивается и не мешает протеканию тока, а лишь стабилизирует падающее на нем напряжение на заданном уровне. Нужно лишь заменить токоограничивающий резистор, из расчета, что нужно уже подавить напряжение Uрез=5В-2.1В-2.0В=0.9В на 10мА, т.е. R=90 Ом. А когда нога переключена на вход с подтяжкой - благодаря крутизне ветви ВАХ до момента пробоя перехода, стабилитрон эквивалентен высокоомному резистору и на нем упадет опять же около 2В, подняв напряжение на ноге МК при отпущеной кнопке до 4В, что уже прочитается как TRUE. При нажатии кнопки нога окажется подтянутой к 5В внутренним резистором сопротивленим около 40КОм (по моим расчетам), а к земле - резистором 5КОм (который зашунтирует цепь светодиода), т.е. на ней будет те же 0.6В и считается FALSE.
Подпаял стабилитрон навесом последовательно с резистором и кнопка заработала как надо.

Теперь настала очередь проверки работы ШИМ и тут тоже возникли проблемы. Стандартная ардуинская команда AnalogWrite(нога, заполнение) работать не желала. Значит что-то не так с библиотекой для тиньки. Полез шерстить даташит на МК и просторы интернета.

Выяснилось интересное:
- на выводы 5, 6 (PB0, PB1) могут быть выведены 2 канала ШИМ (OC0A, OC0B) работающие каждый со своей уставкой заполнения (но одинаковой частотой) от Таймера 0;
- на выводы 2, 3 (PB3, PB4) может быть выведен третий канал ШИМ работающий от Таймера 1, причем на ногу 3 может быть выведен прямой сигнал ШИМ (OC1B), а на ногу 2 - его же инверсная версия (/OC1B). Но вывод идет либо только на 3 ногу, либо на обе сразу. А нам надо ШИМ на 2 ноге, хотя бы инверсный (программно его инвертируем обратно), так что придется конфигурировать вывод на 2 и 3 ноги, и на 3 сигнал не пройдет только потому, что она объявлена входом.

Так вот, насколько я понял, в пакете поддержки ATtiny для Ардуино канал ШИМ от Таймера 1 может выводиться только на ногу 3. Видимо вывод его же инверсной версии посчитали излишеством. Придется сконфигурировать таймер и ШИМ самостоятельно (см. код, функция PWM3_init), вместо использования AnalogWrite.

Еще заметил, что при перенастройке Таймера 1 сбивается работа функции millis() – оказывается, по умолчанию для внутренних часов используется Таймер 1. Но можно перенастроить время на Таймер 0 при помощи макроопределения в файле Arduino\hardware\tiny\cores\tiny\core_build_options.h
/* For various reasons, Timer 1 is a better choice for the millis timer on the "85 processor. */ #define TIMER_TO_USE_FOR_MILLIS 0
Чем мы и воспользуемся, поскольку Таймер 0 в этом проекте как раз полностью свободен.

Также возник вопрос по диапазону уставки оборотов, читаемой с переменного резистора. Автор исходной схемы добавил последовательно с переменником 10K постоянный резистор 36K, видимо из расчета чтобы код АЦП вписался в диапазон 0-255. Реально получилось 0-230, причем максимум плавал. А хотелось бы именно 0-255 для соответствия полной шкалы уставки с 8-битным ШИМом. Для этого я выпаял постоянник и заменил перемычкой на +5В, АЦП стал читать весь диапазон, а 4 младших бита отбрасываем программно. И зачем нужна была лишняя деталь?

После тестовых испытания каналов ввода вывода загружаем в микроконтроллер боевую прошивку, написанную на С в среде Arduino по мотивам исходников на Бейсике автора исходной схемы.

Текст программы

// Attiny85 at 1MHz // Не забыть задать таймер 0 для millis и др! // Arduino\hardware\tiny\cores\tiny\core_build_options.h -> TIMER_TO_USE_FOR_MILLIS 0 #include // Подключения #define MODE_LED_PIN PIN_B0 #define MODE_BUT_PIN MODE_LED_PIN #define PWM_LED_PIN PIN_B3 #define AM_PIN PIN_B1 #define SP_PIN A1 #define CUR_PIN A2 // Состояния #define MODE_MANUAL 0 #define MODE_WAITING 1 #define MODE_SETUP_XX 2 #define MODE_SETUP_MAX 3 #define MODE_START 4 #define MODE_DRILLING 5 #define MODE_STOP 6 // Переменные byte Mode = MODE_MANUAL; byte ModeLedVal = LOW; byte SetPoint = 0; int CurrentFiltered = 0; byte CurrentU8 = 0; byte AMButton; byte AMButtonFlt = LOW; static byte ModeButton; static byte ModeButtonFlt = HIGH; // начальные значение для static byte ModeButtonOld = LOW; // исключения срабатывания при старте static byte SetupStep = false; unsigned long BlinkFromMs; unsigned long StartFromMs; unsigned long ModeFromMs; byte W, W0, W1, W2, Wxx, Wmax, Uxx, Uon, Uoff; void PWM3_init() { // Настройка ШИМ на PB3 (pin 2) используя Таймер 1 TCCR1 = _BV (CS11) | _BV (CS10); // prescaler /4 GTCCR = _BV (COM1B0) | _BV (PWM1B); // clear OC1B on compare OCR1B = 255; // начальное заполнение 0% (используем инверсный выход!) OCR1C = 255; // частота ШИМ = 1КГц (1 000 000 /4 /256) } void analogWrite_PB3(uint8_t duty_value) { // analogWrite на PIN_B3 OCR1B = 255-duty_value; // заполнение 0-255 (0-100%) (используем инверсный выход!) } byte ScanButton(void) { // Чтение кнопки подключенной к одному выходу со светодиодом // Ускоренная версия с восстановлением выхода и без отключений ШИМ byte value,port_bak; port_bak = PORTB; // сохранить выход DDRB &= ~(1<interval)){ \ outvar = varname;\ }\ }\ else {\ __lastChange_##varname=millis();\ } // Инициализация void setup() { pinMode(MODE_LED_PIN, OUTPUT); // основное состоние - индикация pinMode(PWM_LED_PIN, OUTPUT); PWM3_init(); // восстанавливанием настройки из EEPROM если они там есть if (EEPROM.read(11)==0xAA) { Wxx = EEPROM.read(0); Wmax = EEPROM.read(1); Uon = EEPROM.read(2); Uoff = EEPROM.read(3); } else { // значения по-умолчанию Wxx = 1; Wmax = 255; Uon = 255; // исключает старт до проведения настройки Uoff = 0; } // Плавный разгон до холостого хода или ручной настройки if (digitalRead(AM_PIN)==HIGH) W0 = Wxx; else { W0 = 255- (analogRead(SP_PIN) >> 2); // 0-255, переменный резистор у нас инверсным получился } W1 = 0; for(W=0 ; W<=W0; W++) { analogWrite_PB3(W); W1 = W1 + 4; delay(W1); } delay(800); Mode = MODE_WAITING; } // Рабочий цикл void loop() { // Индикация текущего режима морганием switch (Mode) { case MODE_MANUAL: ModeLedVal = LOW; // выключено break; case MODE_WAITING: (ModeLedVal==HIGH) ? ModeLedVal=LOW: ModeLedVal=HIGH; // в полнакала break; case MODE_START: case MODE_DRILLING: case MODE_STOP: ModeLedVal = HIGH; // на полную break; case MODE_SETUP_XX: if ((millis()-BlinkFromMs > 400)) { // редко (ModeLedVal==HIGH) ? ModeLedVal=LOW: ModeLedVal=HIGH; BlinkFromMs = millis(); } break; case MODE_SETUP_MAX: if ((millis()-BlinkFromMs > 100)) { // часто (ModeLedVal==HIGH) ? ModeLedVal=LOW: ModeLedVal=HIGH; BlinkFromMs = millis(); } break; } digitalWrite (MODE_LED_PIN, ModeLedVal); // Тумблер Auto/Manual, в Auto размыкается и читается HIGH AMButton = digitalRead(AM_PIN); Debounce(AMButton, AMButtonFlt, 200); // Кнопка настройки, читается спецпроцедурой т.к. совмещена со светодиодом, при нажатии читается LOW ModeButton = ScanButton(); Debounce(ModeButton, ModeButtonFlt, 200); SetupStep = (ModeButtonFlt==LOW) && (ModeButtonOld==HIGH); ModeButtonOld = ModeButtonFlt; // Крутилка SetPoint = 255- (analogRead(SP_PIN) >> 2); // 0-255, переменный резистор у нас инверсным получился // Ток мотора // Основной фильтр RC-цепочка 36K+68nF (постоянная времени 2.5мс, частота среза 65Гц) // но на всякий дополним программным // БИХ-фильтр НЧ первого порядка y(i) = y(i-1) + alpha*(x(i)-y(i-1)) // (он же Экспоненциальное скользящее среднее, EMA) // в фильтре вместо float используем повышенную точность int, для чего сдвигаем влево на свободные 5 бит (знак еще пригодится) // умножение на дробный коэффициент alpha заменяем сдвигом вправо // (6 = /64 = *0.016) 100 циклов - 80% значения, 200 циклов - 96% значения, 369 циклов - 99.6% значения // (5 = /32 = *0.031) 50 циклов - 80% значения, 100 циклов - 96% значения, 179 циклов - 99.6% значения // (4 = /16 = *0.063) 25 циклов - 80% значения, 50 циклов - 96% значения, 90 циклов - 99.6% значения // (3 = /8 = *0.125) 12 циклов - 80% значения, 25 циклов - 96% значения, 45 циклов - 99.6% значения // период работы = АЦП 110мкс + программа = 0,2мс // постоянная времени = 8*0,2мс = 1,6мс, частота среза 625Гц CurrentFiltered = CurrentFiltered + (((analogRead(CUR_PIN) << 5) - CurrentFiltered) >> 3); // для простоты использования приводим к 0-255 // (сдвиг обратно на 5 бит и 2 старших отбрасываем т.к. все интересное (холостой ход) <1В) CurrentU8 = byte (CurrentFiltered >> 5); // если >1В чтобы не перепутать с малыми if ((CurrentFiltered >> 5) & 0x7F00) CurrentU8=255; // Автомат состояний switch (Mode) { case MODE_MANUAL: // Ручное регулирование крутилкой analogWrite_PB3(SetPoint); if (SetupStep) Mode = MODE_SETUP_XX; if (AMButtonFlt==HIGH) { // При переходе в автомат притормозим analogWrite_PB3(Wxx); StartFromMs = millis(); Mode = MODE_STOP; } break; case MODE_WAITING: // Ждем роста тока if (CurrentU8 > Uon) { // Запуск StartFromMs = millis(); analogWrite_PB3(Wmax); Mode = MODE_START; } if (SetupStep) Mode = MODE_SETUP_XX; if (AMButtonFlt==LOW) Mode = MODE_MANUAL; break; case MODE_START: // Раскрутка if (millis()-StartFromMs > 300) Mode = MODE_DRILLING; if (AMButtonFlt==LOW) Mode = MODE_MANUAL; break; case MODE_DRILLING: // Сверлим, ждем падения тока if (CurrentU8 < Uoff) { // Тормозим analogWrite_PB3(Wxx); Mode = MODE_STOP; } if (AMButtonFlt==LOW) Mode = MODE_MANUAL; break; case MODE_STOP: // Тормозим и ждем пока выйдем на ток ХХ if (CurrentU8 < Uon) { // Замедлились if (millis()-StartFromMs > 300) // надежно Mode = MODE_WAITING; } else { StartFromMs = millis(); } if (AMButtonFlt==LOW) Mode = MODE_MANUAL; break; case MODE_SETUP_XX: // Настройка холостого хода Wxx = SetPoint; analogWrite_PB3(Wxx); if (SetupStep) { Uon = byte(1.1 * CurrentU8); EEPROM.write(0,Wxx); EEPROM.write(2,Uon); Mode = MODE_SETUP_MAX; } break; case MODE_SETUP_MAX: // Настройка макс.оборотов Wmax = SetPoint; analogWrite_PB3(Wmax); if (SetupStep) { Uoff = byte(1.1 * CurrentU8); EEPROM.write(1,Wmax); EEPROM.write(3,Uoff); EEPROM.write(11,0xAA); // Тормозим analogWrite_PB3(Wxx); StartFromMs = millis(); Mode = MODE_STOP; } break; default: Mode = MODE_WAITING; return; } }


Подключаем в качестве шунта 5 ваттный резистор 2.2 Ом. Для защиты схемы от индуктивных выбросов напряжения на заднем фронте ШИМ подключаем параллельно мотору диод Шоттки SS34, а для подавления помех от коммутации обмоток – конденсатор 100нФ. И начинаем испытания по управлению мотором дрели.

Сразу достает зубодробильный вой ШИМа на 4КГц (1МГц/256). Добавляем настройку делителя /4 - сразу полегчало, хотя писк никуда не делся, но 1КГц почему-то переносится гораздо легче даже при продолжительной работе.

В ручном режиме обороты мотора нормально регулируются 0-100%, а в автоматическом АЦП цепи обратной связи все время читает MAX значение и ничего не работает. Попутно замечаю, что плата громко пищит даже при отключенном моторе. WTF?

Берем тестер, откапываем осциллограф и начинаем изучать, что же мы выдаем и чего получаем. И роняем челюсть. На шунте вместо пологих волн тока через индуктивность в начале импульсов ШИМ видим иголки в десятки вольт. Значит, через шунт течет импульсный ток в десяток ампер! Причем даже при отключенном двигателе. Не удивительно, что плата зазвенела. Но что же замыкает цепь без двигателя? Крошечный конденсатор 100нФ! Помехи при коммутации обмоток он может и подавит, а пока устраивает кратковременное КЗ на каждом периоде ШИМ! Вывод - помехоподавлящий конденсатор не совместим с ШИМ управлением и контролем с помощью шунта, надо убирать.

И тут до меня доходит, что эти высоковольтные выбросы идут почти прямо на АЦП тиньки (т.к. тут амплитудный детектор, то конденсатор на ноге заряжается до максимального напряжения в иголке и благополучно хранит его, т.к. разряд только через утечку диода). Тинька вроде пока помирать не собирается, но что с ее ногой? Приборы показывают постоянное напряжение на ноге 5.2В, выше напряжения питания, но куда делось остальное? Вспоминаем - для борьбы с перенапряжениями в нем есть специально обученные диоды на «+» и «-« питания, стравливающие излишек в БП. Но встроенные диоды хилые и сильно рассчитывать на них не стоит.

Убираем чертов конденсатор, меряем ногой напряжения - работает! Надежные МК делает Atmel! Видимо спасло, что емкость конденсаторов невысока была, немного заряда прокачивали.

Без конденсатора иголки пропали, плата перестала музицировать, нога вроде реально меряет амплитуду тока ШИМ импульса. Запускаем процедуру настройки и пробуем сверлить. Вроде все как надо - при нагрузке добавляет обороты, при выходе сверла сбрасывает. Но не только - несколько раз в минуту самопроизвольно без нагрузки разгоняется и тормозится. Почему непонятно, приборы ничего не показывают. То ли нога подгорела, то ли емкость проводов генерит незаметные иголки как тот кондер, то ли помехи от того же коллектора лезут.

Тут решил бороться с проблемой кардинально, ибо обратил внимание, что больше ни в одной схеме пиковый детектор не используется. Наоборот, везде контролируется интегральное значение тока, пропущенное через RC-фильтры. И такие измерения как раз нечувствительны к помехам в виде единичных выбросов. Меняем диод на резистор - и амплитудный детектор превращается в ФНЧ.

Изменяемое АЦП напряжение упало сразу на порядок - действующее напряжение гораздо ниже амплитудного в случае сигнала в виде пологих волн с паузами между ними. Ловить пришлось напряжение около 0.2 В. Можно конечно было увеличить сопротивление шунта, но для того ли мы городили ШИМ, чтобы греть атмосферу. А еще при большом заполнении ШИМ и нагрузке на мотор можно получить перенапряжение. Потому придется работать с низким U холостого хода.

Реакция на нагрузку похоже тоже замедлилась. Разгон начинается примерно через полсекунды, но большой проблемы в этом не вижу - как раз сверло выставится и пройдет медь на малых оборотах. И больше никаких ложных стартов. Можно работать.

Финальная схема устройства:


Устройство было смонтировано в корпусе, в роли которого выступила герметичная электромонтажная «Коробка Тусо распаечная пластиковая без сальников 120х80х50 мм, IP55 серая 67052 Рувинил Россия». Хотелось найти более плоскую, но ничего типа 110*60*30 не нашел. Чтобы не разводить гирлянды на столе, скрутил регулятор с БП в единое целое. Кирпич получился знатный, но нам его и не в кармане носить. И хотя после сверления пары десятков отверстий, сколько-нибудь заметного наощупь нагрева ключевого полевика, шунта и стабилизатора заметно не было, насверлил немного вентиляции на дне и задней стенке.







С тех пор станочек с регулятором участвовал в создании еще 2 плат (сколько ему потребовалось сверлить можете глянуть по словам «AVR Fusebit Doctor». Его работой весьма доволен.

Еще хочу отметить, что твердосплавные сверла с Али имеют хвостовик 3.2 мм, а цанги были только 3.0 и 3.5 - в одну сверло не лезет, а в другой не зажимается. Намотал на сверло медной проволоки и кое-как вставил в 3.5 мм, но некрасиво. Если кто встречал цангу на 3.2 диаметром 6 мм (везде разве что дремелевские, со сточенным до 5мм хвостом), подскажите.

При смене сверл процедуру настройки приходится проходить заново – видимо на токе двигателя сказывается разный момент инерции «тощего» обычного сверла и твердосплавного с утолщенным хвостовиком. Но это делается быстро и не напрягает. Желающие могут добавить в прошивку сохранение профилей сверл:)

Неоднократно встречал совет сверлить платы под слоем воды, чтобы не дышать стеклянными опилками. У меня не получилось. Точно спозиционировать сверло, когда оно высоко, мешает преломление в воде, глазомер косячит. А когда сверло входит в воду, начинает идти рябь и вообще ничего не видно. Надо что ли остановленную дрель выставлять, а потом включать? В итоге, миску с водой просто поставил рядом и периодически макаю в нее плату – чтобы смочить и смыть опилки. В этом случае опилки сырые и тоже не летят, собираются конусом над отверстием.

И еще одно лирическое отступление, про мелкий крепеж.

В устройство решил поставить разъем питания типа «DS-225, Гнездо питания на панель». Для его крепления требовались винтики с гайками с резьбой 2.5мм. В кладовке ничего подходящего не нашлось, а тут еще вспомнил, что в другое поделие 2мм винтики требуются. Значит стоит пополнить коллекцию крепежа, чтобы в следующий раз ради гаечки на другой конец области не лететь. В строительных магазинах ничего меньше M3 не попадалось, значит надо искать специализированные.

Первым относительно удобным магазином оказался сетевой
Внутри глаза разбежались от всяких полезностей, но вот незадача – самые малые винтики были только M2.5 одной длины, а вот гаек и шайб к ним нет и не бывает! Впечатлила продажа гаечек поштучно за 2р/шт и ссыпание всего купленного в один мешок-майку (мелких пакетиков для разных размеров не было). Опять же накладно брать про запас разных размеров.

Выручил другой магазин крепежа –
Вот там есть реально все в наличии, от М1.6, с разным шлицем и головой, с продажей поштучно и на вес, и по цене на порядок ниже предыдущего конкурента. Вот только надо сразу ехать в магазин-склад на ул.Плеханова, а то я поначалу зашел в магазин около метро Перово и сильно удивился озвученной цене. И выяснилось, что у них исключительно нержавейка, а за обычным крепежом надо ехать на перекладных в промзону.

Планирую купить +67 Добавить в избранное Обзор понравился +76 +152

Да, это моя дрель и почему-то все пугаются когда её видят.
Ну, жалко мне пока денег на нормальный девайс.


Самая приятная часть работы, и трудная, это сверление печатной платы. Я собираю что-то новое и необходимо сверлить все это дело.
Очень часто приходится класть дрель на стол, пока что-то обдумываешь или тебя отвлекает супруга, а если на столе ещё и творческий беспорядок, то микродрели очень сложно найти место. Из-за вибрации во включенном состоянии она может слететь со стола.

Тут возникла идея собрать стабилизатор с регулировкой частоты вращения.
Нашел хорошую подборку схем на Радиокоте:

Идея и схема

Хотелось сделать так, чтобы микродрель имела маленькие обороты на холостом режиме, а при нагрузке частота вращения сверла увеличивалась.
Во-первых это очень удобно, во-вторых двигатель работает в облегченном режиме, в-третьих меньше изнашиваются щетки.


Источник изображения radiokot.ru


А вот и схема такого автоматического регулятора оборотов. Её автор Александър Савов из Болгарии .

Детали

В схеме применены легкодоступные детали. Микросхему необходимо установить на радиатор во избежание её перегрева.
Конденсаторы электролитические на номинальное напряжение 16В.
Диоды 1N4007 можно заменить на любые другие рассчитанные на ток не менее 1А.
Светодиод АЛ307 любой другой. Печатная плата выполнена на одностороннем стеклотекстолите.
Резистор R5 мощностью не менее 2Вт, или проволочный.

БП должен иметь запас по току, на напряжение 12 В. Регулятор работоспособен при напряжении 12-30 В, но свыше 14В придется заменить конденсаторы на соответствующие по напряжению.

Налаживание

Готовое устройство после сборки начинает работать сразу. Резистором P1 выставляем требуемую частоту вращения на холостом ходу. Резистор P2 служит для установки чувствительности к нагрузке, им выбираем нужный момент увеличения оборотов. Если увеличить емкость конденсатора C4, то увеличится время задержки высоких оборотов или если двигатель работает рывками. Я увеличил емкость до 47uF.

Двигатель для устройства не критичен. Только необходимо чтобы он был в хорошем состоянии.
Я долго мучился, уже подумал, что у схемы был глюк, что она непонятно как регулирует обороты, или уменьшает обороты во время сверления.
Но разобрал двигатель, прочистил коллектор, подточил графитовые щетки, смазал подшипники, собрал.
Установил искрогасящие конденсаторы. Схема заработала прекрасно.
Теперь не нужен неудобный выключатель на корпусе микродрели.

Печатная плата в Sprint Layout


Разводка уважаемого МП42Б , вытащена из общего файла его статьи, упомянутой в начале.

02.05.2019 по просьбе камрадов на плате подписал детали и немного навёл красоты Игорь Котов.
Архив обновлён.
🕗 05/02/19 ⚖️ 11,15 Kb ⇣ 19

Добрый день. Представляю Вашему вниманию регулятор для ковырялоки печатых плат, схема взята из журнала Радио за 2010 год. Собрал и испытал - работает отлично. В схеме нет дефицитных деталей - всего 4 распространённых транзистора и несколько пассивных радиоэлементов, которые можно выпаять из любой нерабочей аппаратуры. Принципиальная схема регулятора оборотов:

Работа схемы регулятора минидрели

На элементах vd1, vd2, r2, r3, vt1, r11 собран регулятор холостых (далее ХО) оборотов. Диод vd3 является разобщителем регулятора ХО и токовым тригером собранным на vt2, r4, r7. Диод vd5 облегчает температурный режим датчика тока r7. Конденсатор С2 и резистор r6 обеспечиваю плавное возвращение к режиму ХО. На vd4, r5, c1 выполнен ограничитель стартового тока (т.е плавный пуск). Составной транзистор образованный vt3 и vt4 усиливает токи предыдущих узлов. Паралельно моторчику обязательно надо включить защитный диод vd6 в обратном направлении, чтобы ЭДС, возникающая в нём, не пожгла редиоэлементы регулятора.


Все резисторы кроме R7 применены на 0,125вт, R7 на 0,5вт. Сопротивление R7 желательно подбирать для каждого моторчика индивидуально, чтобы было чёткое срабатывание токового тригера в нужный момент, т.е. сверло не соскальзывало с кернения и не клинило.


Прилагаю фото регулятора оборотов минидрели в сборе и разведёную мной топологию печатной платы. Транзистор П213 необходино включать именно так, как написано на плате с названием "п213" (из-за обратного диода).



При использовании планарных компонентов, размеры платы можно уменьшить до такой степени, что она поместится в корпус (или снаружи) дрельки. Как вариант, данный регулятор оборотов допустимо использовать для управления оборотами любых электромоторчиков постоянного тока - в игрушках, вентиляции и т.д. Желаю всем удачи. С уважением, Жданов Андрей (Мастер665).

Схемы и конструкции регуляторов оборотов для микродрели радиолюбителя

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

В этой статье мы рассмотрим радиолюбительскую схему облегчающую работу с микродрелью – регулятор оборотов микродрели . Схема проста по исполнению и доступна начинающим радиолюбителям.

Со сверлением отверстий в печатных платах сталкивается практически каждый радиолюбитель . Для этого применяют микродрель из электродвигателя постоянного тока с цанговым зажимом для сверл. Предлагаемый узел управления двигателем микродрели прост, не содержит дефицитных деталей и доступен для повторения начинающему радиолюбителю .

В исходном состоянии, после подачи напряжения питания, сверло вращается с минимальной частотой – 100 оборотов в минуту. В таком режиме дрель не перегревается и в тоже время довольно просто попасть в центр. При нажатии на сверло дрель быстро набирает обороты до номинальной частоты вращения, начинается сверление. По его завершению, когда сопротивление материалы платы падает, обороты автоматически уменьшаются до “холостых”.

Схема управления содержит выпрямитель на диодах VD1-VD4, сглаживающих конденсаторах С1 и С3 и два канала управления дрелью. Первый выполнен на интегральном стабилизаторе DA1, второй на транзисторах VT1, VT2. Назначение первого – поддерживать на нагрузке около 2,5 вольт. Ток двигателя протекает через датчик тока на резисторе R1. Падения напряжения на этом резисторе в отсутствии механической нагрузки двигателя недостаточно для открывания транзистора VT1. С началом сверления ток двигателя растет. Как только напряжение на резисторе R1 достигнет приблизительно 0,6 В, транзистор VT1 и вместе с ним VT2 открываются, подключая двигатель к выпрямителю. Для ограничения напряжения падения на датчике тока применен диод VD5. Конденсатор С2 служит для небольшой задержки перехода на “холостой” режим. Стабилизатору DA1 и транзистору VT2 требуются теплоотводы.

Детали. В конструкции можно применить практически любые аналогичные транзисторы с допустимым напряжение коллектор-эмиттер не менее 35 В и с током коллектора для VT1 не менее 100 мА.

Настройка. Напряжение на двигателе без нагрузки можно изменить резистором R3. Его сопротивление можно рассчитать по формуле:

U=1,25(1+R3/R5)+0,0001*R3-Uvd6, где U- требуемое напряжение на двигателе а Uvd6 – падение напряжение на диоде.

R1=0,6*Ixx/2, где Ixx – ток холостого хода.

Схема регулятора оборотов микродрели

Очень часто при работе и просверливания отверстий в плате , мы то откладываем микродрель,то обратно берем ее в руки и продолжаем сверлить.Но зачастую двигатели греются на высоких оборотах, и в руку уже труднее взять.

Изза вибрации часто она может соскользнуть с платы,и сделать шлейф.Для этих целей предлогаю собрать регулятор оборотов своими руками .

Принцип работы следующий, когда нагрузка небольшая, то небольшой и ток проходи,и обороты понижены,как только нагрузка возрастает,обороты повышаются.

Схема устройства:



Огромный плюс устройства в том что двигатель работает в облегченном режиме,и меньше изнашиваются контактные щетки.

Это главный ответ на вопрос как сделать что бы при сверлении обороты повышались

Печатная плата



Радиодетали для регулятора

Микросхему LM317 необходимо установить на радиатор в избежание перегрева. Установка куллера нетребуется
Конденсаторы электролитические на номинальное напряжение 16В.
Диоды 1N4007 можно заменить на любые другие рассчитанные на ток не менее 1А.
Светодиод АЛ307 любой другой. Печатная плата выполнена на одностороннем стеклотекстолите.
Резистор R5 мощностью не менее 2Вт, или проволочный.

БП должен иметь запас по току, на напряжение 12В. Регулятор работоспособен при напряжении 12-30В, но свыше 14В придется заменить конденсаторы на соответствующие по напряжению.
Готовое устройство после сборки начинает работать сразу.

Налаживание и мелочи в работе

Резистором P1 выставляем требуемую частоту вращения на холостом ходу. Резистор P2 служит для установки чувствительности к нагрузке, им выбираем нужный момент увеличения оборотов. Если увеличить емкость конденсатора C4, то увеличится время задержки высоких оборотов или если двигатель работает рывками.
Я увеличил емкость до 47uF.
Двигатель для устройства не критичен. Только необходимо чтобы он был в хорошем состоянии.
Я долго мучился, уже подумал, что у схемы был глюк, что она непонятно как регулирует обороты, или уменьшает обороты во время сверления.
Но разобрал двигатель, прочистил коллектор, подточил графитовые щетки, смазал подшипники, собрал.
Установил искрогасящие конденсаторы. Схема заработала прекрасно.
Теперь не нужен неудобный выключатель на корпусе микродрели.