Что такое радиус колеса автомобиля. Динамический и кинематический радиусы колеса

Согласно данному Правилу в маркировку автомобильных шин вводятся дополнительные индексы скорости и их несущей способности. Некоторые индексы скорости и несущей способности автомобильных шин представлены в приведенной ниже таблице.

Некоторые индексы скорости и несущей способности автомобильных шин:

к – это полный вес автомобиля, приходящийся на одно колесо.

Примеры обозначения шин согласно Правилу 30 ЕЭК ООН:

175/80R16Q88 – шины для «Нивы»;

175/80R16СN106 – шины для «Газели».

Свободный радиус колеса

Свободный радиус r 0 – это радиус колеса, находящегося в свободном (не нагруженном) состоянии. Например, для низкопрофильной шины типа 205/70-14 78S (обозначение шины приведено согласно Правила 30 ЕЭК ООН) этот радиус отыщется как:

r 0 = 0,5 d + Н = 0,5 d +В (Н/В )10 -2 ; (100×Н/В) – серия шины; 1 дюйм равен 25,4мм , то есть:

r 0 = (0,5×14×25,4 + 205×0,7)×10 –3 = (177,8 + 143,5)×10 –3 = 0,321м .

Статический радиус колеса

Одним из определяющих факторов при проведении расчетов эксплуатационных свойств автомобиля является величина от центра колеса до опорной поверхности неподвижного колеса, нагруженного нормальной нагрузкой (вес неподвижного автомобиля). Строго говоря, учитывая, что шина эластична и при приложении нагрузки деформируется, эта величина представляет собой расстояние от центра колеса до хорды, однако в теории автомобиля эту величину принято называть статическим радиусом (r ст). В технических данных часто величина статического радиуса не приводится, а вместо нее указывается маркировка шины. Очевидно, что если обозначить диаметр обода - d , ширину профиля шины - B , процентное отношение высоты профиля шины к ее ширине (серия шины) - П , наружный диаметр шины - D , то статический радиус определится как:

Для тороидных шин:

;

Для низкопрофильных шин:

;

Для широкопрофильных шин

.

Здесь: - коэффициент радиальной деформации шины. Для шин легковых автомобилей с внутренним давлением в диапазоне 0,15 - 0,25МПа в первом приближении можно принять = 0,15, для шин грузовых автомобилей с внутренним давлением 0,5МПа = 0,1.

Свойства пневматической шины

Пневматическую шину широко применяют благодаря её амортизирующим свойствам. Они значительно смягчают толчки от неровностей дороги.

От физико-механических свойств шины зависят такие эксплуатационные показатели автомобиля, как грузоподъемность, экономичность, управляемость, проходимость и др. В конечном итоге все эти показатели определяются значением и видом деформации шины под действием внешних сил.

Различают четыре вида деформаций пневматической шины: радиальную (нормальную), окружную (тангенциальную), поперечную (боковую) и угловую.

Радиальная деформация шины измеряется её нормальным прогибомh н , равным разности свободного(r 0 ) и статического (r ст) радиусов колеса:

h н =r 0 –r ст.

Под действием статической вертикальной нагрузки (веса неподвижного автомобиля) в результате деформации эластичной конструкции шины уменьшается расстояние от оси колеса до опорной поверхности.

Нормальный прогиб – одна из важнейших характеристик шины, определяющих её нагрузочную способность и плавность хода. С увеличением прогиба повышаются напряжения в элементах конструкции шины, снижается усталостная прочность и срок её службы. Наибольшее допустимое значение нормальной нагрузки, при котором, несмотря на радиальную деформацию, обеспечивается заданный срок службы шины при заданном давлении воздуха в ней, принято называть грузоподъемностью шины. Величина нормальной нагрузки регламентирована ГОСТом или Правилами 30 ЕЭК ООН (для АТС иностранного производства).

Тип и параметры ведущих колес для автомобилей выбираются (таблица 1) в соответствии с нормальной нагрузкой на них. Стандартом предусмотрено несколько допустимых нагрузок на шину в зависимости от давления воздуха в ней. При выборе шины для рассчитываемой машины необходимо руководствоваться следующим правилом. Полученная расчетом нормальная нагрузка на шину не должна превышать максимально допустимую по стандарту при наименьшем давлении воздуха в ней из числа значений предусмотренных стандартом.

При определении нагрузки на ведущее колесо следует предусмотреть максимально возможную загруженность в эксплуатации машины с учетом её технологического назначения.

При равномерном статическом распределении веса автомобиля по осям максимальную нагрузку на одно колесо следует определять, исходя из возможного её перераспределения в эксплуатации. В этом случае учитывается нагрузка на ведущее колесо от силы тяжести автомобиля и перевозимого груза, а также от вертикальной составляющей тягового усилия на сцепке прицепа.

Параметры выбранной шины сверяют с типом и параметрами ведущих колес у машины-прототипа. При сопоставлении параметров выбранного колеса и колеса прототипа следует иметь в виду, что заводы-изготовители грузовых автомобилей иногда применяют увеличенный размер шин (если позволяют предъявляемые к автомобилю требования). «Переразмеренные» шины более долговечны, оказывают меньшее давление на почву и придают машине более высокие тяговые свойства. Применение подобных шин наиболее целесообразно на грузовых автомобилях, эксплуатирующихся на грунтовых дорогах или дорогах с плохим покрытием.

Таблица 1.

Параметры автомобильных шин (ГОСТ 7463-89)

Автомобиль

Колесная формула

Обозначение шины

Давление в шинах, МПа : пер./задн.

Нормальный прогиб шины h н обусловлен её деформацией не только в радиальном, но и в окружном и в поперечном направлениях. При этом 40% полной нагрузки сжатия шины затрачивается на деформацию её материала и 60% - на сжатие воздуха.

Различают шины низкого, среднего и высокого давления . Шины низкого давления имеют увеличенный объем воздуха, меньшее число слоев корда. Они мягче воспринимают толчки от неровностей дороги и обладают лучшими амортизирующими свойствами, но при меньшей грузоподъемности. Для шин низкого и среднего давления допустимая нормальная деформация шины составляет 15…20% её высоты, а для шин высокого давления – 10…12%.

При качении шина подвергается действию центробежных сил. Величина центробежных сил зависит от скорости качения, массы и размеров шины. Под действием центробежных сит шина несколько увеличивается по диаметру. Испытания показали, что при качении шины со скоростью 180-220 км/ч высота профиля увеличивается на 10-13% (результаты испытаний шин на шоссейно-кольцевых мотоциклетных гонках).

Одновременно действие центробежных сил вызывает (за счет увеличения радиальной жесткости шины) некоторое увеличение расстояния от оси колеса до опорной поверхности (плоскости дороги) с одновременным уменьшением площади контакта шины с дорогой. Это расстояние называется динамическим радиусом шины Rо, который больше, чем статический радиус Rс, т. е. Rо>Rc.

Однако при эксплуатационных скоростях движения Rо, практически равен Rс.

Радиусом качения называется отношение линейной скорости движения колеса к угловой скорости вращения колеса:

где Rк - радиус качения, м;
V - линейная скорость, м/с;
w - угловая скорость, рад/с.

Сопротивление качению

Рис. Качение шины по твердой поверхности

При качении колеса по твердой поверхности каркас шины подвержен циклическим деформациям. При входе в контакт шина деформируется и прогибается, а при выходе из контакта - восстанавливает свою первоначальную форму. Энергия деформации шины, образующаяся при входе элементов в контакт с поверхностью, расходуется на внутреннее трение между слоями каркаса и проскальзывание в зоне контакта. Часть этой энергии превращается в тепло и передается окружающей среде. Вследствие потерь механической энергии скорость восстановления первоначальной формы шины при выходе элементов шины из контакта меньше скорости деформации шины при входе элементов в контакт. В силу этого нормальные реакции в зоне контакта несколько перераспределяются (по сравнению с неподвижным колесом) и эпюра распределения нормальных сил принимает вид, как показано на рисунке. Равнодействующая нормальных реакций, равная по величине радиальной нагрузке на шину, перемещается вперед по отношению к вертикали, прохооящей через ось колеса, на некоторую величину а («снос» радиальной реакции).

Момент, создаваемый радиальной реакцией относительно оси колеса, называется моментом сопротивления качению:

При условии установившегося движения (при постоянной скорости качения) ведомого колеса действует момент, уравновешивающий момент сопротивления качению. Этот момент создается двумя силами - толкающей
силой Р и горизонтальной реакцией дороги X:

М = XRд = PRд,
где Р - толкающая сила;
X - горизонтальная реакция дороги;
Rд - динамический радиус.

PRд = Qa - условие установившегося движения.

Отношение толкаюшей силы Р к радиальной реакции Q называется коэффициентом сопротивления качению k.

На коэффициент сопротивления качению кроме шины значительное влияние оказывает качество дорожного покрытия.

Мощность Nк, затрачиваемая на качение ведомого колеса, равна произведению силы сопротивления качению Рс на линейную скорость качения V:

Раскрывая это уравнение, можно написать:

Nк = N1 + N2 + N3 - N4,
где N1 - мощность, затрачиваемая на деформацию шины;
N2 - мощность, затрачиваемая на проскальзывание шины в зоне контакта;
N3 - мощность, затрачиваемая на трение в подшипниках колеса и сопротивление воздуха;
N4- мощность, развиваемая шиной при восстановлении формы шины в момент выхода элементов из контакта.

Потери мощности на качение колеса значительно возрастают с увеличением скорости качения, так как в этом случае возрастает энергия деформации и, следовательно, большая часть энергии превращается в тепло.

При увеличении прогиба резко возрастает деформация каркаса и протектора шины, т. е. потери энергии на гистерезис.

Одновременно увеличивается теплообразование. Все это, в конечном итоге, ведет к увеличению мощности, затрачиваемой на качение шины.

Испытания показали, что на качение мотоциклетной шины в условиях ведомого колеса (по гладкому барабану) затрачивается мощность от 1,2 до 3 л. с. (в зависимости от размера шины и скорости качения).

Таким образом, общие потери от шин весьма значительны и соизмеримы с мощностью двигателя мотоцикла.

Совершенно очевидно, что решение вопроса снижения мощности, затрачиваемой на качение мотоциклетных шин, имеет исключительное значение. Уменьшение этих потерь не только увеличит долговечность шин, но значительно увеличит моторесурс двигателя и агрегатов мотоцикла, а также положительно скажется на топливной экономичности двигателей.

Исследования, проведенные при создании шин типа Р, показали, что потери мощности при качении шин этого типа значительно меньше (на 30-40%), чем у шин стандартной конструкции.

Кроме того, снижаются потери при переводе шин на двухслойный каркас из корда 232 КТ.

Особенно важно максимально снизить потери мощности при качении шин для гоночных мотоциклов, так как при их движении на высоких скоростях потери в шинах составляют до 30% по отношению к общим затратам мощности на движение. Один из методов снижения этих потерь - применение в каркасе гоночных шин капронового корда 0,40 К. Применив такой корд, уменьшили толщину каркаса, снизили вес шины, она стала более эластичной, менее подверженной нагреву.

Большое влияние на коэффициент сопротивления качению шины оказывает характер рисунка протектора.

Для уменьшения энергии, образующейся при входе элементов в контакт с дорогой, максимально снижена масса протектора гоночных шин. Если у дорожных шин глубина рисунка протектора находится в пределах 7-9 мм, то у гоночных шин она составляет 5 мм.

Кроме того, рисунок протектора гоночных шин выполняют таким образом, чтобы его элементы оказывали наименьшее сопротивление при качении шины.

Как правило, рисунок протектора шин переднего (ведомого) и заднего (ведущего) колес мотоцикла различен. Это объясняется тем, что назначение шины переднего колеса - обеспечение надежной управляемости, а заднего колеса - передача крутящего момента.

Наличие кольцевых выступов на шинах передних колес способствует снижению потерь при качении и улучшает управляемость и устойчивость, особенно на поворотах.

Рис. Кривые зависимости потерь мощности от скорости качения: 1 - шина размера 80-484 (3,25-19), модели Л-130 (дорожная); 2 - шина размера 85-484 (3,25-19) модели Л-179 (для заднего колеса шоссейно-кольцевых мотоциклов)

Зигзагообразный рисунок протектора заднего колеса обеспечивает надежную передачу крутящего момента и также снижает потери на качение. Все вышеизложенные меры позволяют в общем существенно снизить потери мощности при качении шин. На графике показаны кривые изменения потерь мощности при различных скоростях для дорожных и гоночных шин. Как видно из рисунка, гоночные шины по сравнению с дорожными имеют меньшие потери.

Рис. Появление «волны» при качении шины на критической скорости: 1 - шина; 2 - барабан испытательного стенда

Критическая скорость качения шины

Когда скорость качения шины достигает некоторого предельного значения, потери мощности на качение резко возрастают. Коэффициент сопротивления качению увеличивается примерно в 10 раз.

На поверхности беговой дорожки шины появляется «волна». Эта «волна», оставаясь неподвижной в пространстве, перемещается по каркасу шины со скоростью ее вращения.

Образование «волны» приводит к быстрому разрушению шины. В зоне протектора-каркаса резко увеличивается температура, так как внутреннее трение в шине становится более интенсивным, и уменьшается прочность связи между протектором и каркасом.

Под действием центробежных сил, значительных по величине при высоких скоростях качения, происходит отрыв участков протектора или элементов рисунка.

Скорость качения, при которой появляется «волна», считается критической скоростью качения шины.

Как правило, при качении на критической скорости шина разрушается после пробега 5-15 км.

При увеличении давления в шине критическая скорость увеличивается.

Однако практика показывает, что во время ШКХ скорость движения мотоциклов на некоторых участках на 20-25% превышает критическую скорость шин, определенную на стенде (при качении шины по барабану). При этом шины не разрушаются. Это объясняется тем, что при качении по плоскости деформация шины меньше (при одинаковом режиме), чем при качении по барабану, а следовательно, критическая скорость выше. Кроме того время движения мотоцикла со скоростью, превышающей критическую скорость шин, незначительно. При этом шина хорошо охлаждается встречным потоком воздуха. В связи с этим технические характеристики шин спортивных мотоциклов, предназначенных для ШКГ, допускают кратковременное превышение скорости в определенных пределах.

Качение шины в условиях ведущего и тормозного колеса. Качение шины в условиях ведущего колеса происходит при приложении к колесу крутящего момента Мкр.

Схема сил, действующих на ведущее колесо, приведена на рисунке.

Рис. Схема сил, действующих на шину ведущего колеса при качении

К колесу, нагруженному вертикальной силой Q, приложен крутящий момент Мкр.

Реакция дороги Qp, равная по величине нагрузке Q, смещена относительно оси колеса на некоторое расстояние а. Сила Qp создает момент сопротивления качению Мс:

Крутящий момент Мкр создает тяговую ситу Рт:

Рт = Мкр/Rк

где Rк- радиус качения.

При качении шины в условиях ведущего колеса под действием крутящего момента происходит перераспределение касательных сил в контакте.

В передней по направлению движения части контакта касательные силы увеличиваются, в задней - уменьшаются. При этом равнодействующая касательных сил X равна тяговой силе Рт.

Мощность, затрачиваемая на качение ведущего колеса, равна произведению крутящего момента Мкр на угловую скорость Wк вращения колеса:

Это уравнение справедливо только в том случае, когда в контакте отсутствует проскальзывание.

Однако касательные силы вызывают проскальзывание элементов рисунка протектора относительно дороги.

В силу этого действительная величина скорости поступательного движения колеса Уд несколько ниже теоретической Vт.

Отношение действительной скорости поступательного движения Vд к теоретической Vт называется коэффициентом полезного действия колеса, учитывающим потери скорости на проскальзывание шины относительно дороги.

Величину проскальзывания а можно оценить по следующей формуле:

Очевидно, значение действительной скорости Vд может меняться в пределах от Vт до 0, т. е.:

Интенсивность проскальзывания зависит от величины касательных сил, определяемых в свою очередь величиной крутящего момента.

Ранее было показано:

Mкр = XRк;
Х = Рт = Qv,
где v - коэффициент сцепления шины с дорогой.

При увеличении крутящего момента до некоторого значения, превышающего критическое, величина равнодействующей касательных сил X становится выше допустимой и шина полностью проскальзывает относительно дороги.

Cуществующие мотоциклетные шины в диапазоне рабочих нагрузок могут передавать без полного проскальзывания крутящий момент 55-75 кгс*м (в зависимости от размера шины, величины нагрузки, давления и т. д.).

При торможении мотоцикла силы, действующие на шину, по характеру аналогичны силам, возникающим при работе шины в условиях ведущего колеса.

При приложении к колесу тормозного момента Мт в зоне контакта происходит перераспределение касательных сил. Наибольшие касательные силы возникают в задней части контакта. Равнодействующая касательных сил по величине и направлению совпадает с тормозной силой Т:

При увеличении тормозного момента Мт выше некоторого критического значения тормозная сила Т становится больше силы сцепления шины с дорогой (T>Qv) и в контакте начинается полное проскальзывание, наступает явление юза.

При торможении на юз в зоне контакта повышается температура протектора, падает коэффициент сцепления, резко увеличивается износ рисунка протектора. Эффективность торможения уменьшается (увеличивается тормозной путь).

Наиболее эффективное торможение происходит при значениях тормозной силы Т, близкой по величине силе сцепления шины с дорогой.

Следовательно, при использовании водителем динамических качеств мотоцикла в целях уменьшения износа шин к ведущему колесу должен подводиться крутящий момент, обеспечивающий наименьшее проскальзывание шины относительно дороги.

Автомобиль (трактор) движется в результате действия на него различных сил, которые делятся на движущие силы и силы сопротивления движению. Основной движущей силой является тяговая сила, приложенная к ведущим колесам. Тяговая сила возникает в результате работы двигателя и вызвана взаимодействием ведущих колес с дорогой. Тяговую силу P к определяют как отношение момента на полуосях к радиусу ведущих колес при равномерном движении автомобиля. Следовательно, для определения тяговой силы необходимо знать величину радиуса ведущего колеса. Поскольку на колеса автомобиля устанавливаются эластичные пневматические шины, то величина радиуса колеса во время движения изменяется. В связи с этим различают следующие радиусы колес:

1.Номинальный – радиус колеса в свободном состоянии: r н =d/2+H, (6)

где d – диаметр обода, м;

H – полная высота профиля шины, м.

2.Статический r с – расстояние от поверхности дороги до оси нагруженного неподвижного колеса.

r с =(d/2+H)∙λ , (7)

где λ–коэффициент радиальной деформации шины.

3.Динамический r д –расстояние от поверхности дороги до оси катящегося нагру женного колеса. Этот радиус увеличивается с уменьшением воспринимаемой нагрузки колесом G к и увеличением внутреннего давления воздуха в шине p ш.

При увеличении скорости автомобиля под действием центробежных сил шина растягивается в радиальном направлении, вследствие чего радиус r д увеличивается. При качении колеса изменяется и деформация поверхности качения в сравнении с неподвижным колесом. Поэтому плечо приложения равнодействующих касательных реакций дороги r д отличается от r с. Однако, как показали эксперименты, для практических тяговых расчетов можно принимать r с ~ r д.

4 Кинематический радиус (качения) колеса r к – радиус такого условного недеформирующегося кольца, которое имеет с данным эластичным колесом одинаковую угловую и линейную скорости.

У колеса, катящегося под действием крутящего момента, элементы протектора, входящие в контакт с дорогой, сжаты, и колесо при равных частотах вращения проходит меньший путь, чем во время свободного качения; у колеса же, нагруженного тормозным моментом элементы протектора, входящие в контакт с дорогой, растянуты. Поэтому тормозное колесо проходит при равных числах оборотов несколько больший путь, чем свободно катящееся колесо. Таким образом, под действием крутящего момента радиус r к – уменьшается, а под действием тормозного момента – увеличивается. Для определения величины r к методом “меловых отпечатков” на дороге мелом или краской наносят поперечную линию, на которую накатывается колесо автомобиля, а затем оставляет на дороге отпечатки.

Замерив расстояние l между крайними отпечатками, определяют радиус качения по формуле: r к = l / 2π∙n , (8)

где n – частота вращения колеса, соответ ствующая расстоянию l .

В случае полного буксования колеса расстояние l = 0 и радиус r к = 0. Во время скольжения невращающихся колес (“ЮЗ”) частота вращения n=0 и r к .

В связи с большим многообразием видов деформации пневматической шины ее радиус не имеет одного определенного значения, как у колеса с жестким ободом.

Различают следующие радиусы качения колеса с пневматической шиной: свободный г 0 , статический r cv динамический г а и кинематический г к.

Свободный радиус г 0 - это наибольший радиус беговой дорожки колеса, свободного от внешней нагрузки. Он равен расстоянию от поверхности беговой дорожки до оси колеса.

Статический радиус г ст представляет собой расстояние от оси неподвижного колеса, нагруженного нормальной нагрузкой, до плоскости его опоры. Значения статического радиуса при максимальной нагрузке регламентированы стандартом для каждой шины.

Динамический радиус г я - это расстояние от оси движущегося колеса до точки приложения результирующей элементарных реакций почвы, действующих на колесо.

Статический и динамический радиусы уменьшаются с увеличением нормальной нагрузки и с уменьшением давления воздуха в шине. Зависимость динамического радиуса от нагрузки моментом, полученная экспериментально Е.А. Чудаковым, показана на рис. 9, а, график 1. Из рисунка видно, что с увеличением момента М веа, передаваемого колесом, его динамический радиус уменьшается. Это объясняется тем, что расстояние по вертикали между осью колеса и его опорной поверхностью уменьшается вследствие деформации скручивания боковины шины. Кроме того, под действием крутящего момента возникает не только касательная сила, но и нормальная составляющая, которая стремится прижать колесо к поверхности дороги.

Рис. 9. Зависимости, полученные Е.А. Чудаковым: а - изменение динамического (Я и кинематического (2) радиусов колеса в зависимости от ведущего момента: б - изменение кинематического радиуса колеса под действием ведущего и тормозного моментов

Величина динамического радиуса зависит также от глубины колеи при движении по деформируемому грунту или почве. Чем больше глубина колеи, тем меньше динамический радиус. Динамический радиус колеса является плечом приложения касательной реакции почвы, толкающей ведущее колесо. Поэтому динамический радиус называют еще силовым.

Кинематический радиус или радиус качения колеса - это поделенный на действительный путь колеса пройденный за один оборот. Еще кинематический радиус определяют как радиус такого фиктивного колеса с жестким ободом, которое при отсутствии пробуксовывания и проскальзывания имеет одинаковую с действительным колесом угловую скорость вращения и поступательную скорость:

где v K - поступательная скорость качения колеса; со к - угловая скорость вращения колеса; S K - путь колеса за один оборот с учетом буксования или скольжения.

Из выражения (5) следует, что при полном буксовании колеса (v K = 0) радиус г к = 0, а при полном скольжении (со к = 0) кинематический радиус равен ©о.

На рис. 9, а (график 2) представлена полученная Е.А. Чудаковым зависимость изменения кинематического радиуса колеса от действия на него крутящего момента М вед. Из рисунка следует, что величина изменения динамического и кинематического радиусов в зависимости от действия момента разная. Более крутая зависимость кинематического радиуса колеса по сравнению с зависимостью динамического радиуса может быть объяснена действием на него двух факторов. Во-первых, кинематический радиус уменьшается на ту же величину, на которую уменьшается динамический радиус от действия ведущего момента, как показано на рис. 9, я, график /. Во-вторых, приложенный к шине ведущий или тормозной момент вызывает деформацию сжатия или растяжения набегающей части шины. Сопровождающие эти деформации процессы легко проследить, если представить колесо в виде цилиндрической упругой спирали с равномерной навивкой витков. Как показано на рис. 10, а, под действием ведущего момента набегающая часть шины (передней) сжимается, вследствие чего общий периметр окружности протектора шины уменьшается, путь колеса S K за один оборот становится меньше. Чем больше деформация сжатия шины в набегающей части, тем больше снижение пути S K , что в соответствии с (5) пропорционально уменьшению кинематического радиуса г к.

При действии тормозного момента происходит обратное явление. К опорной поверхности подходят растянутые элементы шины

(рис. 10, б). Периметр шины и путь колеса S K , проходимый за один его оборот, возрастают по мере увеличения тормозного момента. Поэтому кинематический радиус увеличивается.

Рис. 10. Схема деформации шины от действия моментов М вед (а) и М т (б)

На рис. 9, б показана зависимость изменения радиуса колеса от действия на него крутящего активного Л/ вед и тормозного М 1 моментов при устойчивом сцеплении колеса с опорной поверхностью. Е.А. Чудаков предложил следующую формулу для определения радиуса колеса:

где г к 0 - радиус качения колеса при свободном режиме качения, когда ведущий момент и момент сопротивления качению равны между собой; А, т - коэффициент тангенциальной эластичности шины, зависящий от ее типа и конструкции, который находят по результатам экспериментов.

При инженерных расчетах в качестве динамического и кинематического радиусов обычно используют приведенный в стандарте статический радиус данной шины при установленном давлении воздуха и максимальной нагрузке на нее. Принимают, что колесо движется по несминаемой поверхности.

При движении по колее статический радиус - это расстояние от оси колеса до дна колеи. Однако при движении колеса по колее точка приложения равнодействующей элементарных реакций почвы, образовывающая крутящий момент (ведущий или сопротивления), будет находиться выше дна колеи и ниже поверхности почвы (см. рис. 17). Динамический радиус в этом случае зависит от глубины колеи: чем она глубже, тем больше разница между статическим и динамическим радиусами колес, тем больше погрешность расчетов от допущения г л = г ст

При качении эластичного (деформированного) колеса под действием силовых факторов происходит тангенциальная деформация шины, при которой действительное расстояние от оси вращения колеса до опорной поверхности уменьшается. Это расстояние называют динамическим радиусом r д колеса. Его величина зависит от ряда конструктивных и эксплуатационных факторов, таких, например, как жесткость шины и внутреннее давление в ней, вес автомобиля, приходящейся на колесо, скорость движения, ускорение, сопротивление качению и др.

Динамический радиус уменьшается с увеличением крутящего момента и с уменьшением давления воздуха в шине. Величина r д несколько возрастает с увеличением скорости движения автомобиля вследствие роста центробежных сил. Динамический радиус колеса является плечом приложения толкающей силы. Поэтому его называют еще силовым радиусом .

Качение эластичного колеса по твердой опорной поверхности (например, по асфальтовому или бетонному шоссе) сопровождается некоторым проскальзыванием элементов протектора колеса в зоне его контакта с дорогой. Это объясняется разностью длин участков колеса и дороги, вступающих в контакт. Это явление называют упругим проскальзыванием шины, в отличие от скольжения (буксования), когда все элементы протектора смещаются относительно опорной поверхности. Упругого проскальзывания не было бы при условии абсолютного равенства этих участков. Но это возможно лишь в том случае, когда колесо и дорога имеют контакт по дуге. В действительности же, опорный контур деформированного колеса вступает в контакт с плоской поверхностью недеформированной дороги, и проскальзывание становится неизбежным.

Для учета этого явления в расчетах используют понятие кинематического радиуса колеса (радиуса качения ) r к . Таким образом, расчетный радиус качения r к представляет собой такой радиус фиктивного недеформированного колеса, которое при отсутствии проскальзывания имеет с реальным (деформированным) колесом одинаковые линейные (поступательные) скорости качения v и углового вращения ω к . То есть величина r к характеризует условный радиус, который служит для выражения расчетной кинематической зависимости между скоростью движения v автомобиля и угловой скоростью вращения колеса ω к :



Особенностью радиуса качения колеса является то, что он не может быть измерен непосредственно, а определен только теоретически. Если переписать приведенную выше формулу как:

, (τ - время)

то из полученного выражения видно, что определить величину r к можно расчетом. Для этого необходимо замерить путь S , проходимый колесом за n оборотов, и разделить его на угол поворота колеса (φ к = 2πn ).

Величина упругого проскальзывания растет при одновременном увеличении эластичности (податливости) шины и жесткости дороги или, наоборот, при увеличении жесткости шины и мягкости дороги. На мягкой грунтовой дороге повышенное давление в шине увеличивает потери на деформацию грунта. Снижение внутреннего давления в шине позволяет на мягких грунтах уменьшить перемещение частиц почвы и деформации ее слоев, что обуславливает снижение сопротивления качению и повышению проходимости.

Однако, на твердой опорной поверхности при малом давлении происходит чрезмерный прогиб шин с увеличением плеча трения качения а . Компромиссным решение данной проблемы является использование шин с регулируемым внутренним давлением.

В практических расчетах радиус качения колеса оценивается по приближенной формуле:

r к = (0,85…0,9) r 0 (здесь r 0 - свободный радиус колеса).

Для дорог с твердым покрытием (движение колеса с минимальным проскальзыванием) принимают: r к = r d .