Проектирование преобразователя тока в напряжение. Преобразователь тока в напряжение на одном операционном усилителе Схема преобразователя ток напряжение на оу

Введение

3. Повышение линейности ПНТ

4. Исследование ПНТ

Библиографический список


Введение

Преобразователи напряжение-ток (ПНТ) также являются важным элементом в схемотехнике аналоговых электронных устройств. На их основе могут быть выполнены различные прецизионные операционные усилители, в которых ПНТ используется как входной дифференциальный каскад; ПНТ органично входят в структуры АПН и могут использоваться в различных измерительных схемах.


1. Простейшие преобразователи напряжения в ток

Принцип преобразования напряжения в ток может быть проиллюстрирован с помощью простейшего усилительного каскада на одиночном транзисторе (рис. 1). (Отметим, что резистор R1 выполняет функцию подключения коллектора к шине питания; он достаточно низкоомный и служит как датчик тока при измерении тока коллектора.)

Рис. 1. Простейший преобразователь напряжение-ток на одиночном транзисторе

Предположим, что напряжение смещения UC транзистору обеспечивает источник сигнала UС. Тогда для тока эмиттера IЭ транзистора может быть записано следующее уравнение:

. (1)

Оценивать качество преобразования входного напряжения в выходной ток (ток коллектора IK транзистора) наиболее просто, находя крутизну прямого преобразования S:


при условии, что a» 1.

Находить производную от выражения (1) в явном виде – достаточно громоздкая процедура, поэтому можно найти производную dUC/dIk, а затем взять обратную величину:

, . (2)

Выражение (2) показывает, что качество преобразования входного напряжения в выходной ток существенным образом зависит от дифференциального сопротивления эмиттера транзистора, которое, в свою очередь, зависит от тока эмиттера, а следовательно, от входного напряжения. Таким образом, простейший ПНТ обладает двумя существенными недостатками:

Нелинейностью крутизны преобразования;

Отсутствие возможности осуществлять преобразование двухполярных сигналов.

2. ПНТ на основе дифференциальных каскадов

Обеспечить преобразование двухполярных сигналов можно с помощью ПНТ на основе дифференциального каскада с последовательной отрицательной обратной связью по току в эмиттерной цепи (рис. 2а).


Рис. 2. Преобразователь напряжение-ток а) и его проходная характеристика б)

Для схемы ПНТ (рис. 2а), воспользовавшись вторым правилом Кирхгофа, можно записать следующее уравнение для узловых потенциалов:

, (3)

где jT – температурный потенциал;

IХ – приращение тока через резистор R1 при воздействии входного напряжения UX.

С учётом того, что разность напряжений база-эмиттер можно представить как:

,

проходная характеристика такого звена (рис. 2б) может быть представлена следующим образом:

. (4)

Очевидно, что нелинейная составляющая в проходной характеристике определяется первым слагаемым в выражении (4).

Достаточно удобным способом оценки погрешности такого преобразователя, обусловленной нелинейностью, может служить нахождение отклонения реальной функции IХ /I0 (кривая 2 на рис. 2б) от её линейного приближения (кривая 1 на рис. 1б). Отметим, что кривая 2 (рис. 2б) представляет собой разность выходных токов коллекторов транзисторов дифференциальной пары.

Отклонение от линейности можно представить следующим образом:

, (5)

где SX=dIX /dUX – крутизна прямой передачи, определяемая из выражения (4);

dIX – абсолютное отклонение тока;

S0 =I0 /U0 – крутизна прямой передачи при линейном приближении;

I0 – максимальный выходной ток преобразователя при подаче на вход максимального напряжения U0.

Отметим, что SX(0) = S0, поэтому:

; (6) , (7)

где rE = jT/I0 – дифференциальное выходное сопротивление транзисторов VT1, VT2 со стороны эмиттера при начальном токе I0; X=IX/I0.

Подставляя (6) и (7) в (8), получаем:


, (8)

поскольку при g << 1 можно положить IX/I0 »UX/U0.

Формула (5) справедлива при относительно малых погрешностях преобразования – меньше 2-3 %. В этом случае при моделировании относительное отклонение от линейности можно представить как:

преобразователь ток напряжение

, (8а)

где SМАКС – максимальное значение крутизны на участке ±U0.

Из (8) следует, что приемлемых уровней погрешности (меньше 0,1 %) можно достичь только при выполнении условий: R1/2rE > 500 и относительном изменении тока X<0,75. Для ПНТ, работающих при питающих напряжениях ±15 В, эти условия могут быть легко реализованы. Для низковольтных схем (при их питании от напряжений меньше ±5 В) выполнение этих условий приведёт к резкому снижению крутизны преобразования входного напряжения в выходной ток, повышению уровня шумов и т.д.

Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера.

3. Повышение линейности ПНТ

Каким же образом можно уменьшить влияние дифференциального сопротивления эмиттера на работу подобного ПНТ?

Одним из способов снижения влияния дифференциального сопротивления эмиттеров транзисторов служит введение отрицательной обратной связи.

Упрощённая принципиальная схема ПНТ с операционными усилителями в цепи обратной связи приведена на рисунке 3.

Рис. 3. Упрощённая схема ПНТ с операционными усилителями

В этой схемотехнической конфигурации повышение линейности достигается за счёт того, что разность напряжений между входами операционного усилителя имеет достаточно малое значение, которое практически не меняется, значение дифференциального сопротивления эмиттера делится в петлевое усиление раз, что можно описать выражением:

, (9)

где К – коэффициент усиления по напряжению операционного усилителя.

Из (9) можно получить выражение для крутизны преобразования входного напряжения в ток:

, (10)

то есть влияние нелинейной составляющей ослабляется в петлевое усиление раз.

С точки зрения линейности, такая схема обладает наилучшей линейностью преобразования напряжения в ток (при достаточно большом коэффициенте усиления операционного усилителя), практически не требует настройки, однако достаточно сложна и обладает полосой пропускания, определяемой операционным усилителем.

На рисунке 4 приведён достаточно простой вариант реализации такой схемы при интегральном исполнении, однако, как видно из рисунка, он весьма громоздок, причём на рисунке отсутствуют реальные источники тока.


Рис. 4. Схема ПНТ с линеаризацией крутизны преобразования за счёт ООС

В связи с вышеизложенным схему ПНТ (рис. 4) целесообразно использовать только при интегральном исполнении. Кроме того, следует помнить, что частотные свойства такого преобразователя будут не очень хорошими по сравнению с ПНТ на одиночном дифференциальном каскаде.

Другой способ устранения нелинейности преобразования демонстрируется схемой ПНТ, представленной на рисунке 5. Этот способ компенсации нелинейности получил достаточно широкое распространение . Суть его заключается в следующем: тем или иным способом формируется компенсирующий ток, ослабляющий влияние изменения rE дифференциального каскада при изменении тока эмиттера.

Работает схема ПНИ (рис. 5) следующим образом. Транзисторы VT1 и VT6, образующие дифференциальный каскад, с помощью резистора R1 осуществляют преобразование входного напряжения в выходной ток. Транзисторы VT2 и VT5 включены по схеме с общей базой и передают токи коллекторов транзисторов VT1 и VT6 на выход с коэффициентом передачи α » 1. Одновременно с этим при изменении токов эмиттеров транзисторов VT2 и VT5 меняются и их напряжения база-эмиттер. В этом случае меняется и разность напряжений база-эмиттер транзисторов VT2 и VT5, причём в зависимости от знака приращения входного напряжения UX разность напряжений база-эмиттер транзисторов VT2 и VT5 также меняет знак. Вспомогательный дифференциальный каскад на транзисторах VT3 и VT4 с помощью резистора RK преобразует напряжение, пропорциональное разности баз-эмиттер транзисторов VT2 и VT5, в ток, который перекрёстным образом отправляется на токовые выходы ПНТ. Поскольку в базовой схеме ПНТ на транзисторах VT1 и VT6 присутствует составляющая, обусловленная DUБЭ1,6 этих транзисторов, то при условии, что транзисторы VT2 и VT5 в точности идентичны транзисторам VT1 и VT6, а токи источников опорного тока одинаковы, выбором сопротивления резистора RK можно скомпенсировать влияние DUБЭ1,6.

В радиотехнике часто возникает необходимость в преобразователях. Многие источники сигнала имеют токовый выход. К таким источникам относятся ЦАПы, фоторезисторы, фототранзисторы и др… Для последующих манипуляций с сигналом необходимо преобразовывать его в напряжение. Рассмотрим проверенный временем преобразователь тока в напряжение на ОУ с разными источниками сигнала.

Преобразователь тока в напряжение (или сокращенно I-U преобразователь) — это схемное решение, позволяющее преобразовывать выходной токовый сигнал источника в напряжение.

Так же его называют усилитель — преобразователь сопротивления . Такое название в технической литературе было дано за то, что простейший преобразователь тока в напряжение — это резистор.

Вся магия преобразования происходит по закону дедушки Ома. Ток i вх протекая через резистор R вызывает на нем падение напряжение U вых . Величина этого напряжения прямо пропорциональна произведению сопротивления резистора и входного тока. Пожалуй формулой все звучит даже проще:

U вых = R × i вх

Основной недостаток использования одного резистора состоит в его ненулевом сопротивлении. Это обстоятельство становится серьезной проблемой, когда источник не в состоянии обеспечить необходимый уровень напряжения на резисторе. Результатом буду просадки напряжения на выходе.

Еще больше сопротивление сказывается на работе преобразователя, если у источника тока малый выходной рабочий диапазон. К таким источникам относится, например, фотодиод. Его выходной ток составляет единицы мкА.

В случае же ЦАПа , особенно высококачественного, использование резистора для преобразования предпочтительнее. Почему и зачем читайте в статье . Это обусловлено некоторыми фазовыми проблемами схем, которые будут рассмотрены. К счастью для нас, источникам вроде фотодиода фазовые искажения безразличны.

Схема преобразователя ток-напряжение на ОУ

Схема преобразователя тока в напряжение, совсем не нова, но проверенна и безотказна. В общем виде она выглядит следующим образом:


Ток сигнала i вх втекает в инвертирующий вход. Поскольку входной ток идеального ОУ равен нулю, то весь входящий ток поступает на резистор R цепи обратной связи. Этот ток создает на резисторе падение напряжения по закону все того же Ома.

Как результат ОУ будет стараться поддерживать на сопротивлении нагрузки R Н напряжение, пропорциональное величине входного тока. Коэффициент усиления схемы в, таком случае, имеет размерность сопротивления. Что еще раз объясняет советское название усилитель-преобразователь сопротивления:

K = U вых ÷ i вх = R

Преобразователь для заземленного источника

Рассмотрим несколько схем преобразователя тока в напряжение на ОУ, подходящие для любого случая. Начнем со схемы преобразователя для фотодиода.


Направление протекания тока показано стрелкой, и для данного случая величина выходного напряжения составит:

U вых = − i вх × R

Знак минус появляется из-за выбранного направления протекания тока фотодиода. (Указано стрелкой на схеме выше)

На этой схеме так же показан дополнительный резистор в 1 МОм, с неинвертирующего(+ ) входа ОУ на землю. Схема останется работоспособной и без этого резистора, а вход операционного усилителя в таком случае заземляется напрямую.

Однако имея резистор в 1 МОм в цепи обратной связи, на каждый 1 мкА входного тока на выходе будет создан 1 Вольт напряжения. При таком коэффициенте усиления (миллион раз ) резистор желателен из-за неидеальности операционных усилителей.

Преобразователь тока в напряжение используют и с источниками сигнала, подключенными к шине питания. Такая схема часто применяется с элементами вроде фототранзисторов. Фототранзистор потребляет (пропускает ) ток, под действием внешнего источника света, положительной шины питания.


Преобразователь тока в напряжение для незаземленного источника

Такой преобразователь отличается наличием второго токочувствительного резистора в цепи прохождения сигнального тока, который заземлен. Схема симметричного преобразователя ток-напряжение это подобие дифференциального усилителя.


В следствии падения напряжения так же и на заземленном резисторе, потенциал входа ОУ падает ниже потенциала земли, а на выходе устанавливается напряжение:

U вых = −2 × i вх × R

Симметричный преобразователь тока в напряжение — пример операционной схемы, которой необходим незаземленный (плавающий ) источник сигнала. Таким источником может послужить все тот же фотодиод. При этом фотодиод может быть вынесен за пределы платы. Для еще большей минимизации помех, желательно использовать экранированный кабель, экран которого должен быть соединен с землей.

Заключение

Материал подготовлен исключительно для сайта

На рис.1.2 приведена основная инвертирующая схема включения ОУ.

Рис.1.2. Основная инвертирующая схема включения ОУ

Выход ОУ соединен с инвертирующим входом сопротивлением обратной связи R ОС . Сигнал подается на инвертирующий вход через сопротивление R 1 . Исходя из свойств ОУ (бесконечный коэффициент усиления), делаем вывод, что при конечном напряжении на выходе разность потенциалов в трчках А и В равна нулю. Т.к. потенциал точки В равен нулю (соединение с землей), то и потенциал точки А тоже равен нулю. Этот факт дает основание считать точку А кажущейся землей, поскольку прямого соединения с землей эта точка не имеет.

Отсюда следует, что ток во входной цепи определяется только сопротивлением R 1 : i = u ВХ / R 1 . Из-за бесконечного входного сопротивления ОУ на вход усилителя ток не ответвляется и полностью протекает по сопротивлению ОС R ОС . Отсюда:
. Подставив сюда значение тока, получим:
. Следовательно, коэффициент усиления:

(1.1)

Входное сопротивление каскада равно R 1 .

1.1. Суммирующий усилитель

Наличие точки кажущейся земли позволяет строить при помощи ОУ суммирующие усилители (рис.1.3).

Рис.1.3. Суммирующий усилитель

Вследствие того, что потенциал в точке А равен нулю, входные токи не влияют друг на друга и определяются только параметрами входных цепей:

Эти токи суммируются в цепи обратной связи:
.

Подставим значения токов:
, отсюда:

(1.2)

Изменяя значения сопротивлений, можно задавать весовые коэффициенты, с которыми суммируются входные напряжения. В частности, при равенстве всех сопротивлений получаем чистую сумму входных напряжений.

1.4. Основная неинвертирующая схема включения оу

На рис.1.4. приведена основная неинвертирующая схема включения ОУ.

Рис.1.4. Основная неинвертирующая схема включения ОУ

Исходя из тех же предпосылок, что и в предыдущих случаях, проведем анализ работы данной схемы.

1)
.

3)
.

4) Приравнивая токи, получаем:
.

5) Отсюда окончательно получаем коэффициент усиления:

. (1.3)

Как видно из (1.3), коэффициент усиления неинвертирующего усиления не может быть меньше единицы.

1.5. Повторитель

Частным случаем неинвертирующего усилителя является повторитель (рис.1.5).

Рис.1.5. Повторитель на ОУ

Коэффициент передачи такого каскада равен единице. Он обладает очень высоким входным и низким выходным сопротивлением. Такие свойства позволяют применять его в качестве буферного каскада, чтобы исключить влияние одной части большой схемы на другую.

1.6. Преобразователь тока в напряжение

Простейшим преобразователем ток-напряжение является, как известно, резистор. Ему, однако, присущ недостаток, заключающийся в том, что для подключаемого источника тока его входное сопротивление не равно нулю (напомним, что для источника тока нормальным является режим короткого замыкания, поскольку источник тока имеет большое выходное сопротивление, которое должно быть намного больше сопротивления нагрузки). Схема, приведенная на рис.1.6, свободна от указанного недостатка и обеспечивает точное преобразование тока в напряжение:

u 2 = −R i 1 . (1.4)

Точка А имеет квазинулевой потенциал, поэтому входное сопротивление устройства равно нулю, а токi 1 протекает по резисторуR , обеспечивая выходное напряжение (1.4).

Рис.1.6. Преобразователь тока в напряжение

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Плюсы данной схемы: маленькое входное синфазное ; входной и выходной сигнал обладают общей «землей»; очень простота техническая реализация с одним источником питания.

Минусы: в нагрузке отсутствует прямая связь с «землей»; нет возможности коммутации нагрузки ключом в отрицательном полюсе; существует вероятность поломки измерительной схемы при коротком замыкании.

Осуществлять измерение тока в отрицательном полюсе нагрузки достаточно просто. Для этой цели подходит много стандартных операционных усилителей, используемых для работы при однополярном питании устройства. Выбор конкретного типа усилителя обуславливается необходимой точностью, на которую сильно влияет смещение нуля ОУ, его температурный дрейф и погрешность установки. В начале шкалы измерений появляется значительная погрешность преобразования, объясняемая ненулевым значением минимального выходного напряжения ОУ. Для исключения этого серьёзного минуса необходимо двухполярное питание усилителя.

Плюсы: нагрузка всегда заземлена; сразу видно КЗ в нагрузке. Минусы: Достаточно высокий уровень синфазного входного напряжение (и даже очень высокое); требуется смещение выходного сигнала до уровня, используемого для дальнейшей обработки в системе (простыми словами привязка к «земле»).


В схеме на рисунке левее можно использовать любой из подходящих по допустимому напряжению ОУ, предназначенный для работы при однополярном питании и максимальным входным синфазным напряжением, достигающим уровня питания, например ОУ на микросборке AD8603. Максимум питания не должен превышать максимально допустимого напряжения питания ОУ.

Но существуют усилители, способные работать при входном синфазном напряжении, значительно превышающем уровень питания схемы. Например при использование ОУ LT1637, изображенном на рисунке правее, напряжение может доходить до порогового уровня в 44 В при напряжении питания всего 3 В. Для измерения тока в положительном полюсе нагрузки с очень низкой погрешностью отлично зарекомендовали себя инструментальные усилители, например LTC2053, LTC6800 и INA337. Существуют и специализированные микросхемы, например - INA138 и INA168.

В радиолюбительской практике для несложных и недорогих конструкций, подойдут сдвоенные ОУ типа LM358, допускающие работу с напряжениями до 32В. На рисунке ниже показана одна из типовых схем включения LM358 в роли монитора тока нагрузки.


Приведенные выше схемы очень удобно использовать в самодельных БП для контроля и измерения нагрузочного тока, а также для реализации устройств защиты от КЗ. Датчик тока может обладать очень низким сопротивлением и отпадает необходимость подгонки этого сопротивления, как это в случае амперметре. В схеме, на рисунке левее, можно регулировать сопротивление нагрузочного резистора R L . Для уменьшения провала выходного напряжения БП, номинал сопротивления токового датчика - сопротивление R1 в схеме правее вообще лучше взять применить 0,01 Ом, изменив при этом номиналR2 на 10 Ом или увеличив сопротивление R3 до 10кОм.

Преобразователи напряжения в ток (U/I) нашли широкое применение при передаче информации в аналоговом виде на значительные расстояния. Большинство измерительных устройств, применяемых при автоматизации нефтяной промышленности, имеют токовый выход. Преобразователи U/I являются практически идеальными источниками тока. Значение тока, несущего информацию о некоторой физической величине (давление, температура, уровень), не зависит от сопротивления линии связи (в некоторых пределах), что позволяет исключить ее влияние.

Один из вариантов преобразователя построен на основе инвертирующей схемы, где взамен резистора включена нагрузка
(рисунок 7.5).

Рисунок 7.5 - Инвертирующий преобразователь напряжение – ток

Функцию преобразования легко получить из следующих выражений

. (7.28)

В этой схеме реализована отрицательная обратная связь по току, это обстоятельство обеспечивает большое выходное сопротивление преобразователя

Поэтому изменение сопротивления нагрузки в широких пределах не влияет на значения тока . Однако, возможное изменение сопротивления нагрузки не беспредельное. Следует учесть, что ток в нагрузке поддерживается за счет напряжения
, которое не может быть больше, чем
. Отсюда следует, что максимальное сопротивление, которое можно включить в нагрузку без изменения функции преобразования равно

. (7.30)

Недостаток этой схемы – малое входное сопротивление
, который устраняется в схеме преобразователя, построенного на основе неинвертирующего включения ОУ (рисунок 7.6).


Рисунок 7.6 - Неинвертирующий преобразователь напряжение – ток

В этой схеме введена последовательная отрицательная обратная связь по току, что и обеспечивает большое входное сопротивление. Преобразователь имеет потенциальный вход и не нагружает источник сигнала, который может иметь большое входное сопротивление.

Функцию преобразования можно получить из следующих уравнений

, (7.31)

. (7.32)

Достаточно часто требуется обеспечить передачу большого тока на значительное расстояние, для этого можно применить более мощный ОУ или добавить умощняющий транзистор (рисунок 7.7).

Рисунок 7.7 - Преобразователь напряжение – ток

с умощняющим транзистором

В этой схеме
, но токбольше тока нагрузки на ток базы, который может быть не стабильным. Для исключения этого эффекта биполярный транзистор заменяют полевым транзистором с изолированным каналом. У него токи стока и истока всегда одинаковы.

7.5. Преобразователь ток – напряжение

При измерении тока важно, чтобы входное сопротивление прибора, включаемого в цепь было близким к нулю и не влияло на режим работы цепи. Таким свойством обладает преобразователь ток – напряжение (рисунок 7.8). Преобразователь имеет токовый вход и потенциальный выход. Этот вывод можно сделать, определив вид, способ введения и способ снятия обратной связи.

Рисунок 7.8 - Преобразователь ток – напряжение

В преобразователе реализована отрицательная обратная связь по напряжению с параллельным способом введения.

Ток , втекающий в точкуa равен току. Ток, проходящий через резистор, равен нулю, т.к. напряжение
, приложенное к резистору, равно нулю. Токравен току, а ток
=0 из условия идеальности ОУ.

Выходное напряжение равно

. .33)

Входное сопротивление преобразователя определяется как входное сопротивление усилителя с параллельным введением ООС